KANAMATSU Tomoyuki(Professor)

KANAMATSU TOMOYUKI

Specialized field General neuroscience
Radiation/chemical substance influence science
Classes Exercise on Environmental Engineering for Symbiosis
Laboratory in Thesis Study 1
Advanced Research 1
Thesis Study 1
Laboratory in Thesis Study 2
Advanced Research 2
Thesis Study 2
Laboratory Fundamentals in Science
Metabolic Biochemistry
Functional Physiology
Neuroscience 1
Neuroscience 2
Physiologically Active Substances
Environmental Toxicology
Research theme Effects of endocrine -disrupting chemicals on the brain function

Application for coverage

Detail of researcher information

Environmental Engineering for Symbiosis of Graduate school of engineering

  • CV 1949; Born in Kyoto
    1976; Master of Education
    1981; Degree: Ph. D. (Dr. of Medical Science)

    1976; Assistant of Toho University, School of Medicine (Dept. of 2nd Physiology)
    1990; Instructor of Soka University (Institute of Life Science)
    1993; Associate Professor of Soka University (Institute of Life Science)
    2001; Professor of Soka University (Institute of Life Science)
    2003: Professor of Soka University (Dept. of Environmental Engineering for Symbiosis,
    Faculty of Engineering)
    1983-1985; Visiting Fellow (America National Institute of Environmental Health Science;
    NIEHS)
    Research field Neuroscience, Neurochemistry, Cerebral blood flow and metabolism, Physiology
    Subject of Study Metabolism of amino acid neurotransmitter in brain
    Neuronal and glial metabolism
    Staple Academic records ·Studies of cerebral metabolism with 13C-labeled compounds-in vivo, ex vivo and in vivo approaches-. RADIOISOTOPES. 2015, Vol.64, 207-217.

    ·K.Nagasawa, A.Kishida, M.Kajiwara, T. Kanamatsu, K.Takatori. A simple convenient synthesis of L-[4-13C] glutamine. J. Label Compd. Radiopharm. 2015, 58, 42-45. 2015.

    ·T.Nakamori, K.Sato, M.Kinoshita, T.Kanamatsu, H.Sakagami, K.Tanaka and H.O.Hanazaki. Positive feedback of NR2B-containing NMDA receptor activity is the initial step toward visual imprinting: a model for juvenile learning. J.Neurochemistry. 2015, 132, 110-123.

    ·I.Kubo, T.Kanamatsu, S.Frutani. Micorfluidic device for enzyme-linked immunosorbent assay (ELISA) and its application to bisphenol A sensing. Sensors and Materials. 2014, Vol.26, 615-621.

    ·Metabolic traits of, and trafficking between neurons and astrocytes: Applying 13C-labeled compounds to primary cultured neural cells. JJMRM, 2014, Vol.34, 101-113.

    ·K.Suzuki, F.Maekawa, S.Suzuki, T.Nakamori, H.Sugiyama, T.Kanamatsu, K.Tanaka, H.Ohki-Hamazaki. Elevated expression of brain-derived neurotrophic factor facilitates visual imprinting in chicks. J Neurochem. 2012, Vol.123, 800-810.

    ·T.Ohtomo, T.Kanamatsu, M.Fujita, M.Takagi,J.Yamada. Sustained downregulation of YY1AP-related protein gene expression in rat hippocampus induced by repeated electroconvulsive shock. Biol Pharm Bull. 2011, Vol. 34, 249-252.

    ·T.Nakamori, K.Sato, Y.Atoji, T.Kanamatsu, K.Tanaka1 and H.Ohki-Hamazak. Demonstration of a neural circuit critical for imprinting behavior in chicks. Neuroscience, 2010, Vol.30, 4467-4480.

    ·Kanamatsu T, Koyama A, Kajiwara M, Takatori K, Nagasawa K. L-Lactate is a preferential precursor over D-glucose for neuronal L-glutamate synthesis - 13C-NMR spectroscopic studies. J. of Medical Application of Stable Isotope and Biogas. 2009, Vol.2, 6-14.

    ·F.Maekawa, T.Nakamori, M.Uchimura, K.Fujiwara, T.Yada, S.Tsukahara, T.Kanamatsu, K.Tanaka, H.Ohki-Hamazaki. Activation of cholecystokinin neurons in the dorsal pallium of the telencephalon is indispensable for the acquisition of chick imprinting behavior. J Neurochem. 2007, Vol.102, 1645-1657.

    ·T.Kanamatsu, T.Otsuki, H.Tokuno, A.Nambu, M.Takada, K.Okamoto, H.Watanabe, M.Umeda, Y.Tsukada. Changes in the rates of the tricarbo-xylic acid (TCA) cycle and glutamine synthe-sis in the monkey brain with hemi-parkinsonism induced by intracarotid infusion of 1-methyl-4-phenyl-1, 2, 3, 6-tetrahydropyridine (MPTP): studies by non-invasive 13C-magnetic resonance spectroscopy. Brain Research. 2007, Vol.1181, 142-148.

    ·F.Maekawa, O.Komine, K.Sato, T.Kanamatsu, M.Uchimura, K.Tanaka, H.Ohki-Hamazaki. Imprinting modulates processing of visual information in the visual wulst of chicks. BMC Neuroscience. 2006, Vol.7: 75.

    ·T.Kanamatsu, R.Watanabe, S.Takase-Yoden. Cerebral metabolism in brains of rats infected with neuropathogenic murine leukemia viruses. J Vet Med Sci. 2006, Vol.68, 259-65.

    ·T.Otsuki, H.Nakama, T.Kanamatsu, Y.Tsukada. Glutamate metabolism in epilepsy: 13C-magnetic resonance spectroscopy observation in the human brain. Neuroreport. 2005, Vol. 16, 2057-60.

    ·Patel AB, de Graaf RA, Mason GF, Kanamatsu T, Tothman DL. Shulman RG, Behar KL. Glutamatergic neurotransmission and neuronal glucose ocidation are couplied during intense neuronal activation. J Cereb Blood Flow Metab. 2004, 24:972-85.

    ·Mason GF, Falk Petersen K, de Graaf RA, Kanamatsu T, Otsuki T, Shulman GI, Rothman DL. A comparison of 13C NMR measurements of the rates of glutamine syntesis and the tri-carboxylic acid cycle during oral and intravenous administration of [1-13C]glucose. Brain Res Brain Res Protoc. 2003,10: 181-90.

    ·Ishihara Y, Watanabe H, Okamot K, Kanamatsu T, Tsukada Y. Temperature monitoring of internal body heating induced by decoupling pulses in animal 13C-MRS experiments. Magn Reson Med. 2000,43: 796-803.

    ·Watanabe H, Umeda M, Ishihara Y, Okamoto K,Oshio K,Kanamatsu T, Tsukada Y. Human brain glucose metabolism mapping using multislice 2D 1H-13C correlation HSQC spectroscopy. Mag. Reson. Med. 2000, 43: 525-533.

    ·Kanamatsu T and Yuasa T. Effect of electroconvulsive shock on rat brain metabolism – Study using 13C-magnetic resonance spectroscopy - . Neurological Medicine. 1999, 51. 405-412.

    ·Watanabe H, Ishihara Y, Okamoto K, Oshio K, Kanamatsu T, Tsukada, Y. 3D lacalized 1H-13C heteronuclear single-quantum coherence correlation spectroscopy in vivo. Magn Reson Med. 2000,43: 200-10.

    ·Kanamatsu T, Y. Tsukada. Effects of ammonia on the anaplerotic pathway and amino acid metabolism in the brain: an ex vivo 13C NMR spectroscopic study of rats after administering [2-13C] glucose with or without ammonium acetate. Brain Res. 1999,841: 11-19.

    ·Tsukada Y, Kanamatsu T, Watanabe H, Okamoto K. In vivo investigatio of glutamate-glutamine metabolism in hyperammonemic monkey brain using 13C-magnetic resonance spectroscopy. Dev. Neurosci.1998, 20: 427-433.

    ·Kanamatsu T,Tsukada Y. Measurement of amino acid metablism derived from [1-13C]glucose in the rat brain using 13C magnetic resonance spectroscopy. Neurochem. Res. 1994, 19: 603-612.

    ·Kanamatsu T, McGinty JF, Mitchell CL, Hong JS. Dynorphin- and enkephalin-like immunoreactivity is altered in limbic-basal ganlia regions of rat brain after repeated electrocnvulsive shock. J. Neurosci. 1986, 6: 644-649.

    ·Kanamatsu T, Obie J, Grimes L, McGinty JF, Yoshikawa K, Sabol S, Hong JS. Kanic acid alters the metabolism of met5-enkephalin and the level of dynorphin A in the rat hippocampus. J. Neurosci. 1986, 6: 3094-3102.

    ·Kanamatsu T, Unsworth CD, Diliberto EJ.Jr, Vivers OH, Hong JS. Reflex splanchnic nerve stimulation increase levels of proenkephalin A mRNA and proenkephalin A-related peptides in the rat adrenal medulla. Proc. Natl. acad. Sci. USA. 1986, 83: 9245-9249.
    Member of Society Japanese Society for Neurochemistry (councilor), Physiological Society of Japan (councilor), Japanese Biochemical Society, Society for Neuroscience, International Brain Research Organization (IBRO), Society for Medical Application of Carbon Thirteen (secretary), International Society for Neurochemistry, Japan Neuroscience Society, Japanese Society of Magnetic Resonance in Medicine (councilor).

ページ公開日:2017/08/18
EN_Search-internal-code:faculty-profiles