平成27年度全学統一入学試験問題

数 学(理工学部)

(2月3日)

開始時刻 午後1時00分 終了時刻 午後2時00分

I 注意事項

- 1. 試験開始の合図があるまで、この問題冊子の中を見てはいけません。
- 2. 合図があったら、必ず裏面の「**Ⅱ 解答上の注意**」をよく読んでから、解答してください。
- 3. この冊子は10ページです。落丁、乱丁、印刷の不鮮明及び解答用紙の汚れなどがあった場合に は申し出てください。
- 4. 解答用紙には解答欄以外に次の記入欄があるので、監督者の指示に従って、それぞれ正しく記入し、マークしてください。
 - ① 受験番号欄

受験番号を記入し、さらにその下のマーク欄にマークしてください。正しくマークされていない場合は、採点できないことがあります。

② 氏名欄

氏名とフリガナを記入してください。

- 5. $\boxed{1}$ \sim $\boxed{3}$ と $\boxed{4}$ または $\boxed{5}$ を選択してください。
 - 4 と 5 の両方を解答した場合は 高得点の方を合否判定に使用します。
- 6. 問題冊子の余白等は適宜利用してもかまいませんが、どのページも切り離してはいけません。
- 7. 試験終了後、問題冊子は持ち帰ってください。

(裏面へ続く)

II 解答上の注意

問題の文中の ア 、 イウ などには、特に指示がないかぎり、数字(0~9)または符号(-、土)が入ります。ア、イ、ウ、…の一つ一つは、これらのいずれか一つに対応します。それらを解答用紙のア、イ、ウ、…で示された解答欄にマークして答えなさい。

(例) アイウ に - 83 と答えたいとき

ア	9		0	1	2	3	4	(5)	6	7	8	9
1	\ominus	\oplus	0	1	2	3	4	(5)	6	7	8	9
ウ	\ominus	±	0	1	2	3	4	(5)	6	7	8	9

 なお、同一の問題文中に
 ア
 、 イウ
 などが2度以上現れる場合、2度目以降は、

 ア
 、 イウ
 のように細字で表記します。

2. 分数形で解答する場合は、既約分数(それ以上約分できない分数)で答えなさい。符号は分子につけ、分母につけてはいけません。

(例)
$$\frac{27}{5}$$
 に $-\frac{4}{5}$ と答えたいときは、 $\frac{-4}{5}$ として $\frac{4}{5}$ と答えたいときは、 $\frac{-4}{5}$ として $\frac{4}{5}$ の ① ② ③ ④ ⑤ ⑥ ⑦ ⑥ ⑨ $\frac{7}{5}$ の ① ② ③ ④ ⑥ ⑥ ⑦ ⑥ ⑨ $\frac{7}{5}$ の ① ② ③ ④ ⑥ ⑥ ⑦ ⑥ ⑨

3. 根号を含む形で解答する場合は、根号の中に現れる自然数が最小となる形で答えなさい。

例えば、
$$\Box$$
 $\sqrt{ サ }$ 、 $\sqrt{ > \chi }$ に $4\sqrt{2}$ 、 $\frac{\sqrt{13}}{2}$ と答えるところを、 $2\sqrt{8}$ 、

 $\frac{\sqrt{52}}{4}$ のように答えてはいけません。また y \sqrt{g} + f \sqrt{y} に $6\sqrt{1+2\sqrt{3}}$ と答えるところを、 $3\sqrt{4+8\sqrt{3}}$ のように答えてはいけません。

1 以下の各問いに答えよ。

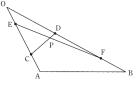
- (1) x の 2 次不等式 x^z-2x-a^z-2 a<0 を満たす x の範囲が -1< x<3 となる定数 a の値は $a=\boxed{\textbf{ア1}}$ 、「ウ」である。
- (2) $x=\sqrt{5}-\sqrt{2}$ の と き、整 数 a、b を 用 い て $x^4=ax^2+b$ と 表 す と、a= $\boxed{$ エオ $}$ 、 b= $\boxed{$ カキ $}$ である。
- (3) AB = 5, BC = 5, CA = 6 の三角形 ABC において、 $\cos B =$ _______ 、 三角形 ABC の

面積は「サシ」である。

- (4) n を自然数、 $S_n=\sum\limits_{k=1}^n a_k$ とする。 $S_n=n\cdot 2$ " となるとき、 $a_1=$ $\boxed{$ ス 、 $a_{10}=$ $\boxed{$ センタチ である。

計算用紙

試験問題は次に続く。


- 〔1〕 男子3人、女子6人を3人ずつ3つのグループA、B、Cに分ける。
 - (1) 分け方の総数は アイウエ 通りである。
 - (2) 女子だけのグループがあるような分け方は **オカキク** 通りである。
- 〔2〕 さいころ 1 個を 2 回投げ、 1 回目に出た目を X_1 、 2 回目に出た目を X_2 とする。ただし、 さいころのどの目の出る確率も等しい。

- 3 -

- 4 -

計算用紙

3 辺の長さがOA = 4, OB = 7, AB = 5 である三角形 OAB において、図のように辺 OA を 3:1 に内分する点を C, 1:3 に内分す る点を E. 辺 OB を 2:3 に内分する点を D. 4:1 に内分する点を F とする。また、 $\overrightarrow{a} = \overrightarrow{OA}$ 、 $\overrightarrow{b} = \overrightarrow{\mathrm{OB}}$ とおく。

試験問題は次に続く。

試験問題は次に続く。

- (1) \overrightarrow{a} \overrightarrow{b} の内積の値は $\overrightarrow{a} \cdot \overrightarrow{b} = \boxed{P1}$ である。
- (2) 三角形 OAB の面積は ウ $\sqrt{$ エ である。
- (3) \overrightarrow{a} , \overrightarrow{b} を用いて $\overrightarrow{DC} =$ $\boxed{ \overrightarrow{D} \overrightarrow{a} \boxed{ + } }$ \overrightarrow{b} と表され、 $|\overrightarrow{DC}| = \boxed{ \overrightarrow{T} }$ である。
- また、三角形 PEC の面積を S_1 、三角形 PDF の面積を S_2 とすると、 $S_1:S_2=$ ツ : $\boxed{\mathcal{F}}$ である。

創価大学 全学統一入試

- (1) $\lim_{x\to 0} \frac{\sin x}{\sqrt{2-x}-\sqrt{2+x}} = \mathbb{P}\sqrt{1}$ $\nabla \delta \delta$.
- $(2) \quad f(x) = \log \left(\, x^2 + 1 \, \right) \, \mathfrak{O} \, \xi \, \mathfrak{F}, \quad f''(2) = \frac{ \boxed{ \ \, 7 \ \, }}{ \boxed{ \ \, $ \ \, $ \ \, $}}, \quad f'''(2) = \frac{ \boxed{ \ \, \ \, $ \ \, $} \, \, 7 \, \mathring{\sigma} \, \mathring{$
- (3) 直線 y= \boxed{f} x+ $\boxed{ }$ は、関数 $y=\frac{3x^2+5x+3}{x+1}$ のグラフの漸近線である。
- [2] $f(t) = \int_0^1 (tx + e^x)^2 dx$ について考える。

 - (1) 定積分 $\int_0^1 xe^x dx$ の値は $\boxed{ + \ }$ である。 (2) f(t) は $t = \boxed{ \dot{\nu} X }$ のとき最小値 $\boxed{ \nu }$ をとる。

- 7 -

- 8 -
- 5 xy 平面において k を負の定数とし、方程式 kx-y-k+3=0 で表される直線を l、方程式 ky + x = 0 で表される直線を m とする。また直線 l と x 軸の交点を A, y 軸との交点を B とす

計算用紙

試験問題はここまで。

- (1) 直線 l は k の値によらず定点(ア , イ)を通る。
- (2) \angle OAB = 60° となる k の値は $k = -\sqrt{ ' \mathcal{D} }$ である。
 (3) 三角形 OAB の面積 S は $S = \boxed{ \mathbb{I} } -\frac{1}{\boxed{ \mathcal{J} }} \left(k + \frac{\boxed{\mathcal{D}}}{k}\right)$ と表され、 $k = -\boxed{ *}$ のと き最小値 ク をとる。
- $SR/N \otimes \mathbb{Z}$ と $SR/N \otimes \mathbb{Z}$ の $SR/N \otimes \mathbb{Z}$ か $SR/N \otimes \mathbb{Z}$ の $SR/N \otimes \mathbb{Z}$ か $SR/N \otimes \mathbb{Z$