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Abstract

A model has been built of a small macroeconomy with demand-
constrained firms on the basis of Keynesian investment theory in which
the price level plays the “carrier of profits” role. The paper shows that
there exists a unique steady-state equilibrium in which the compen-
sation to overhead employees generates the gap between the output
price and the average cost including capital cost. There are multiple
demand-constrained temporary equilibria near a steady-state equilib-
rium.Using the evolutionary stability approach, the paper explores the
questions of whether and to what extent a capitalist economy is robust.
It is found that zero-investment mutant strategy can upset an equi-
librium with the smallest population, thus triggering debt-deflation
process. Further, the paper demonstrates that, the larger compensa-
tion to overhead employees, the more stable the economy becomes. In
particular, the steady state equilibrium with no such compensation is
evolutionarily unstable.

1 Introduction

In his seminal paper, “The Debt-Deflation Theory of Great Depressions,”
Irving Fisher argued that, under ordinary conditions, an economy is always
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near stable equilibrium. However, “after departure from it beyond certain
limits, instability ensues, [...] such a disaster is somewhat like the ‘capsizing’
of a ship” (Fisher (1933)). A comprehensive macroeconomic model is needed
that can explain and encompass both the fluctuations near the steady state
and the process of economic collapse into depression as its special phases.

Currently, dynamic stochastic general equilibrium (DSGE) models (e.g.,
Gali, Gertler and Lepoz-Salido (2001), Woodford (2003), Christiano et al.
(2005), and Smets and Wouters (2007)) are the dominant model building
framework in macroeconomics. However, many researchers have questioned
the validity of their basic assumptions: a representative agent, rational ex-
pectations, and continuous market clearing (Chiarella, Flaschel and Semmler
(2012) and Yoshikawa (2012)). As Chiarella et al. (2012) pointed out, the
use of these assumptions in the baseline DSGE model implies that an econ-
omy exposed to unanticipated shocks moves back to its steady state equilib-
rium while “but persistent business fluctuations or collapse of an economy
remain excluded by the very solution method of rational expectations ap-
proac.” (ibid, p. xxviii)1.For this reason, DSGE models are unstuitable as a
comprehensive model in the context stated above. In contrast, Hyman Min-
sky (1919-1996) hypothesized financial instability arises endogenously out of
a robust financial system. There have been many studies focused on con-
structing a comprehensive model on the basis of Minsky’s hypothesis (See
papers in Semmler (1986).)2.

This paper first presents a formal model that enables the demand price
of productive capital to be expressed in terms of input and output prices
as well as an aggregate demand. In Minsky’s investment theory, the capi-
talized value of expected earnings per unit of investment (the demand price
of productive capital) is the key variable (Minsky (1986, 2008)), thus has
been studied by many researchers (e.g., Taylor and O’Connell (1985), Franke
and Semmler (1986)). However, its dependence on depreciation costs has
not been a focus. Therefore, the interdependence between output price and
aggregate investment has not been clarified. Combining the kinked demand
curve perceived by business firms, as posited by Negishi (1979), with Minsky’s
investment theory clarifies the relationship that enables the output price to
assume the “carrier of profits” role (Minsky (1986), p.141). Conversely, by

1For, a more detailed explanation, see Kuroki (2013) p.107-108.
2For more recent developments in Keynesian macroeconomics, see Chiarella, Flaschel

and Semmler (2012, 2013).
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incorporating the cost of capital, our model formalizes the insight of Minsky:
“the simple equation ‘profits equals investment’ is the fundamental relation
for a macroeconomics....” (Minsky (1986), p. 144).

Then, the model is used to explore the questions of whether and to what
extent a demand-constrained capitalist economy is robust against a sudden
change in the reliability of the prospective yield3. According to Keynes,
“being based on so flimsy a foundation, it (a practical theory of the future)
is subject to sudden and violent changes” (Keynes (1937), pp. 214-215). We
capture these changes as mutant behaviors and then apply a stability concept
similar to an evolutionarily stable outcome (Swinkels (1992)). In the model,
depression occurs as Kirman observed: “cycles and fluctuations emerge not
as the result of some substantial exogenous shock and the reaction to it of
one individual, but as a natural result of interaction, together with occasional
small changes or ‘mutations’ in the behavior of some individuals” (Kirman
(1992), p. 133).

An essential assumption of the model is that the investing firms are
boundedly rational4; they undertake investment projects on the basis of the
demand constraints and static expectations for the prices of output and in-
puts.

Using Fisher’s simile of the ship, we find that the mutant strategy of zero
investment capsizes an economy at certain limits (i.e., upset its temporary
equilibrium by the smallest population of mutants) by precipitating the level
of the output price, hence expected quasi-rents, so that “the demand price
of capital assets is below the supply price; investment in this case will tend
to zero” (Minsky (2008), p. 123). This condition in turn triggers a debt-
deflation process through negative multiplier effects (ibid. p. 125). Since one
natural reason for zero investment is liquidation of over-indebtedness, this
main result is consistent with the following observation by Fisher (1933): “the
chief interrelations between the nine chief factors may be derived deductively,
assuming to start with, that general economic equilibrium is disturbed by
only the one factor of over-indebtedness, and, in particular, assuming that
there is no other influence, whether accidental or designed, tending to affect
the price level” (Fisher (1933), p. 341).

3Keynes made the following observation: “Let us recur to what continuing, much hap-
pens at the crisis. [...] The disillusion comes because doubts suddenly arise concerning the
reliability of the prospectiveyields, perhaps as the stock of newly produced durable goods
steadly increases” (Keynes 1937, p. 317).

4The concept of bounded rationality was first introduced by Simon (1947).
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Furthermore, three stabilizing factors are identified. The first two, in-
vestment and propensity to consume, are intuitively obvious. The more that
firms invests, the more stable the economy. Likewise, the higher the propen-
sity to consume, the more stable the economy although at the cost of long-run
steady-state performance. The third faqctor, the compensation paid to over-
head employees, is not so obvisou and thus has received little attntion from
researchers. An increase in the compensation to overhead employees would
help stabilize the economy without affecting the long run aggregate output.

Fluctuations in asset prices and the resulting credit and leverage cycles
can trigger recession (see, e.g., Kiyotaki and Moore (1997) and Fostel and
Geanakoplos (2008), Semmler and Lucas (2012)). Delli Gatti et al. (2005,
2007, 2008) showed that financial fragility and business fluctuations emerge
as a result of the complex interactions among firms and the banking system.
Delli Gatti et al. (2006, 2009, 2010) demonstrated that the default of one
agent can generate a bankruptcy crisis across the network through the pro-
ductive and credit linkages among firms. These works on leverage cycle and
financial fragility focused on financial developments that explain the cause
of mutant behaviors; hence, their works and ours are complementary.

The structure of the paper is as follows: Section 2 describes the model.
Section 3 shows the existence of a unique steady-state equilibrium and presents
its properties. Section 4 defines Keynesian temporary equilibrium and presents
factors that affect the range of the equilibria. Section 5 presents stability
analyses of Keynesian temporary equilibrium and discusses their implica-
tions. Section 6 summarizes the key points and mentions future extensions.

2 Model

This section first presents the sequence of events and overviews the model for
introducing a demand-constrained temporary equilibrium. It then describes
how a firm facing demand constraint determines employment and investment.

2.1 Description

Time in our model is discrete and is indexed by t = 0, 1, 2, ..., with t =
0 being the initial time. There are two types of workers: administrative
and managerial (hereafter called “overhead employees”) and production and
technology (hereafter called “workers”). The number of overhead employees
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and their salaries in real terms are both fixed whereas the number and wage
rate for workers change over time. The economy consists of a number of
identical firms, households (workers, overhead employees, and shareholders),
and a commercial bank. There are three markets: goods, labor, and bonds
which have a maturity of one period. Firms produce goods that can be
consumed or invested. The only active players in the economy are the firms,
which make employment and investment decisions each period on the basis of
static expectations. The other players, the households and bank, are passive.
The households first decide on consumption (C) on the basis of their income
(Y ) and accumulated financial wealth (WH). The bank provides loans to
firms by creating demand deposits (balances in checking accounts) and issues
one-period bonds and sells them to the household. The interest rates on the
lending loans and bonds are the same while the demand deposits yield no
interest. Demand deposits serve as the only means of payment and are
thus called “money” as well. The money supply is regulated by a monetary
authority. Both the interest and wage rates partially adjust toward their
equilibrium rates and the output price is perfectly flexible5. Until entrants
are introduced in Section 5, the firms are identical unless otherwise specified,
so the variables for an individual firm and those for the aggregate have the
same value.

The sequence of events is as follows:

1. The interest and wage rates are revised and publicly announced; they
remain fixed for the duration of the current period.

2. Firms and the bank pay dividends to shareholders. The bank also pays
interest to lenders.

3. Firms determine the amount of investment and employment, hence the
amount of output. They pay salaries to overhead employees and wages
to workers.

4. Each household’s consumption spending is determined using a common
consumption function.

5. The output price is determined so that the aggregate level of production
equals the aggregate level of demand.

5The wage rate rigidity in the model of Negishi (1979) is endogenously generated,
resulting from kinks in the perceived labor supply function whereas short-run wage rigidity
is simply assumed in this model.
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6. Aggregate demand is distributed among the firms, thereby determining
each firm’s revenues and hence profits.

7. The bank issues and redeems bonds.

Next we will explain these steps in more detail.

1. Revise and publicly announce interest and wage rates

By Walras’ law, the bond market achieves equilibrium when the money mar-
ket is in equilibrium. Hence, the interest rate, rt, is set so that equilibrium in
the money market is achieved. Following Friedman (1971), we assume that
the desired level of end-of-period real money balances, md

t−1, is given by

md
t−1 = ℓd(rt)yt−1, (1)

where ℓd(·) is the inverse of the velocity of circulation6. Although it is more
realistic to use the real income in period t, yt, the real income in the pre-
vious period, yt−1, is used instead for expositional simplicity. This assump-
tion is reasonable considering that the household estimate yt on the basis
of yt−1 when determining the demand for money. Further, for mathematical
tractability, it is assumed that ℓd(rt) = σr−β

t , where σ and β are both positive
parameters7. The equilibrium interest rate rt balances the money market:

M̄

Pt−1

= md
t−1 = σr−β

t yt−1, (2)

where M̄ is the supply of money regulated by the monetary authority. Thus,
rt depends on lagged real income:

rt =

(
σYt−1

M̄

) 1
β

. (3)

In the labor market, for give expected price level Pt and full employ-
ment level Nf , wage rate Wt is determined in accordance with an augmented
Phillips curve so that

Wt −Wt−1

Wt−1

= βw

(Nt−1 −Nf

Nf

)
+

Pt−1 − Pt−2

Pt−1

, (4)

6The wealth term is omitted here because subsequent sections focus on the stability of
a short-run equilibrium near the steady-state, where capital stock is fairly constant.

7This assumption of constant interest-elasticity is widely used in empirical research.
See, for example, Goldfeld et al. (1973) and Ericsson (1998).
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where βw is a positive parameter representing the speed of wage adjustment8.

2. Pay Dividend and interest

Let Lt−1 denote the end-of-period loan balance of each firm. Each firm pays
dividends Dt, at the beginning of period t, to its shareholders. Dividends are
required payments9. Furthermore, we assume that the firm pays 100rt as a
percentage of the dollar value of its capital assets10:

Dt = rt(Pt−1Kt−1 − Lt−1). (5)

Each firm also makes interest payment, rtLt−1 to the bank, out of which
rtBt−1 is paid to households. The bank is assumed to incur no operational
costs and to pass along all interest income rt(Lt−1 − Bt−1) to the house-
holds11. The sum of the dividends from the firms and interest from the bank
is rt(Pt−1Kt−1 − Lt−1) + rt(Lt−1 − Bt−1) = rt(Pt−1Kt−1 − Bt−1). Therefore,
the household’s total dividend and interest income is

rt(Pt−1Kt−1 −Bt−1) + rtBt−1 = rtPt−1Kt−1. (6)

3. Determine investment and employment

Each firm has a linearly homogeneous Cobb-Douglas production function,
hence the quantity of production, Qt, is determined by the number of workers,
Nt, and capital stock available at the beginning of period t, Kt−1:

Qt = Kα
t−1N

1−α
t , (7)

where α ∈ (0, 1) represents the output elasticity of capital.

8Since the unemployment rate can drop below that of natural unemployment, we allow
Nt−1 to exceed Nf .

9This view on dividends is shared by Minsky: “Such a firm expects this coming period’s
gross profits after taxes, and after its required payments on its debts and its dividends to
stockholders, ...” (Minsky 2008, p. 105). Chick made the same point. “In Chapters 10
and 11 (of General Theory) dividends were treated like interest, because the subject was
attraction of these securities to holders” (Chick 1991, p.288).

10This assumption is common in agent-based research. See, for example, Galli (2003,
2008). However, there is no concensus among economists about how much of the total
payout should be in the form of dividends (see Al-Malkawi et al. (2010))

11We could equivalently assume that the government collects the profits of the bank as
a tax and transfers them to the households.
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Firm Bank Household
Pt−1Kt−1 Lt−1 Lt−1 Mt−1 Mt−1 WH

t−1

Eq
t−1 Bt−1 Bt−1

Eq
t−1

Table 1: Consolidated Balance Sheets of Firms, Bank, and Households

Firms obtain investment funds either from retained profits or by bor-
rowing from the bank12. The replacement cost, i.e., the price of new in-
vestmentgoods (Pt−1)is used in evaluating the capital stock. Hence, each
firm’s end-of-period equity value is Eq

t−1 = Pt−1Kt−1−Lt−1. Table 1 displays
consolidated balance sheets for firms, the bank, and households.

The total wages to workers is WtNt. Firms also pays salaries, Pt−1H̄Nf ,
to managers where H̄ signifies the fraction of real income of managers per
full employment level of employment13. Denoting the depreciation rate of
capital by δ its capital stock evolves according to

Kt = Zt + (1− δ)Kt−1. (8)

Further, the firm’s total cost, Vt, is

Vt = Pt−1H̄Nf +WtNt + UtKt−1, (9)

where Ut is the user cost of capital under static expectation, i.e., Ut =
Pt−1(rt + δ)14. Following Minsky (1986), we treat wage and salary pay-
ment to managers as an allocation of profits: “The wage and salary income
of those who do not furnish labor required by the techonology embodied in
capital assets are viewed as allocation of profits” (Minsky (1986), p. 154).
Therefore, salary to managers is not treated as cost here. Define the average
direct cost at as the sum of the workers’ wage bill and capital cost per output,
so that

at =
WtNt + UtKt−1

Qt

.

12Equity financing is omitted to avoid the complex problem of determining stock price.
13For sake of simplicity, we assume that each firm pays a fixed amount of salaries in

real term to managers over entire periods per workforce . We also ignore the effect of
the amount of employees on the wage rate of workers by assuming that the number of
managers is constant over time.

14The real user cost of capital includes capital gain. See, Hall and Jorgenson (1967).
The static expectation is reasonable in view of the constant money supply.
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The firm makes investment decision based on an estimated cost for invest-
ment goods, which is taken as Pt−1

15. We will explain how the firm decides
on employment and investment in Section 2.2.

4. Determine household consumption spending

The households of workers, in aggregate, supply a fixed amount of labor, N̄ .
They also determine the demand for consumption goods and money, hence
bonds. Let’s consider consumption demand first. If we add the total capital
income (6) to the total income received by workers and overhead employees,
i.e., PtH̄ + WtNt, the aggregate nominal income of households, Yt, can be
expressed as

Yt = Pt−1H̄Nf +WtNt + rtPt−1Kt−1. (10)

Note that the total financial wealth of households is M̄ + Bt−1 + Eq
t−1 =

Pt−1Kt−1 because there is no outside money in the model. Let Ct denote ag-
gregate consumption spending in real terms. Following Ando and Modigliani
(1963), we see that nominal aggregate consumption depends linearly on Yt

and WH
t−1:

PtCt = cyYt + cw(Pt−1Kt−1), 0 < cy < 1, 0 < cw < 1, (11)

where cy and cw are propensities to consume from the households’ flow of
income and stock of wealth.

5. Determine output price

The output price is determined as follows. The equilibrium condition in the
goods market is given by

Qt = Ct + Zt. (12)

15It usually takes multiple periods to complete the building of plant as formulated by
Kydland and Prescott (1982). In addition to this time length, a substantial time length
is necessary to make plans, decisions, and orders. Christiano and Todd (1996) note:
“The other noteworthy feature of investment projects is that they typically begin with
a lengthy planning phase, during which architectural plans are drawn up, financing is
arranged, permits are obtained from various local authorities, and so on.” Since the price
of the current period investment goods, Pt is available only at the end of each period while
investment decision must be made at the beginning of the period, it seems reasonable to
assume that, at the beginning of each period, the firm uses the output price in the previous
period, Pt−1 as the estimated price of investment goods.
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Since the price level adjusts instantaneously in this market, it is determined
by

Pt =
cyYt + cwPt−1Kt−1

Qt − Zt

. (13)

6. Distribute aggregate demand among firms

Each firm sells Z ′
t units of output to other firms at price Pt−1 as investment

goods and Ct units of output at price Pt to consumers, who simply walk into
a shop at the end of each period. Hence, the firm’s profit is given by16

Πt = PtCt + Pt−1Z
′
t − Vt. (14)

= PtCt + Pt−1Z
′
t −

(
Pt−1H̄Nf +WtNt + UtKt−1

)
. (15)

Since the firm can use its internal fund Pt−1δKt−1 to finance the investment,
the firm’s debt balance evolves according to

Lt = Lt−1 + Pt−1Zt − {PtCt + Pt−1Z
′
t − (WtNt + Pt−1H̄Nf + rtE

q
t−1 + rtLt−1)}

= Lt−1 − Πt + Pt−1(Zt − δKt−1), (16)

7. Issue and redeem bonds

Let St−1 be the aggregate balance of liquid assets, i.e., St−1 = M̄ + Bt−1,
which is equal to Lt−1 by Table 1. The supply of bonds outstanding is
determined in accordance with (16) to be Bt = Lt−M̄ . The bank issues new
bonds ∆B = Bt − Bt−1 so that the new bond balance equals the required
bond balance, Bt. From the household’ aggregate budget constraint, we have

St = St−1 + Yt − PtCt. (17)

The value of equity, Eq
t , is the residual, i.e.,

Eq
t = PtKt − Lt.

16This definition of profit is more like that of retained earnings than the conventionally
definition, which treats dividends as a part of profit. Lemma 1 below suggests that our
definition is useful for measuring the profitability of investment. Notice that the current
payment for investment spending does not appear in Vt. This is because the payment is
made form the capital account. For future reference, we define quasi-rent Πq as revenue
minus wages, namely Πq

t = PtCt + Pt−1Z
′
t − WtNt. We define gross profit, denoted

by Πg, as quasi-rent minus capital cost (including dividends and principal repayment)
Πg

t = Πq
t − rt(Pt−1Kt−1 − Lt−1)− (rt + δ)Lt−1 = Πt + δ(Pt−1Kt−1 − Lt−1).
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Now we are ready to explain the determination of employment and invest-
ment.

2.2 Firms in a Demand Deficient Regime

This subsection describes how firms determine the amounts of investment and
employment and thus production. This will enable derivation of aggregate
employment and investment as functions of prices and aggregate demand,
Firms are boundedly rational because they do not engage in any strategic
reasoning in forecasting the consequences of their decisions and because they
maintain static expectations about prices and aggregate demand. Hereafter,
we use lower case letters to deonote individual-level variables and capital
letters to denote aggregate variables.

To introduce a new assumption, we index firms by using θ. The labor-
capital ratio of firm θ is denoted as νt(θ) = nt(θ)/kt−1(θ), the investment
ratio is denoted as ζt(θ) = zt(θ)/kt−1(θ), and a strategy pair is represented
by xt(θ) = (νt(θ), ζt(θ)). The demand constraint ratios per physical capital
for periods t and t + 1 are respectively represented by λt(θ) = q̄t(θ)/kt−1(θ)
and λ′

t+1(θ) = q̄t+1(θ)/kt−1(θ).
To allow for aggregation over firms, we assume that the aggregate de-

mand is allocated to individual firms in proportion to their capital stock,
so the λ(θ)’s of all firms are identical. We state the proportional demand
assumption formally:

Assumption 1. ∀θ, λt(θ) = λt, and λ′
t+1(θ) = λ′

t+1.

2.2.1 Employment Decision

First, let us describe how a firm determines the level of employment in a
demand deficient economy. We follow the methodology for a perceived kinked
demand curve developed by Negishi (1979)17. According to Negishi, due to
imperfect information about prices, asymmetric responses by customers to
a price increase versus a price reduction give rise to a kinked demand curve
(Figure 1). For the reader’s convenience, Appendix A summarizes the results
of Negishi (1979) in our context.

17The pioneering work by Sweezy (1939) introduced the kinked demand curve in
oligopoly theory.
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Figure 1: Output Decision using Kinked Demand
Curve

Definition 1. A kinked demand curve characterized by (Pt, q̄t) is the sub-
jective demand schedule that passes through the starting point, (Pt, q̄t),

p = p(q, Pt, q̄t),

such that
Pt = p(q̄t, Pt, q̄t),

and that p = Pt for q ≤ q̄t and ∂p/∂q < 0 for q > q̄t, where q is the possible
level of output and p is the price at which an individual firm believes that it
can sell quantity q.

For market price Pt and demand constraint q̄t, Negishi (1979) showed that
the firm will choose employment level nt to maximize the current quasi-rent:

πq
t = Pt min(F (nt), q̄t)−Wtnt. (18)

In our context, the quasi-rent can be expressed as a function of νt and λt:

πq
t = πν(νt;λt, kt−1) = kt−1

(
Pt min(ν1−α

t , λt) −Wtνt

)
. The marginal cost is
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given by

MC(Wt, ν) =
Wt

F ′(nt)
=

Wtν
α
t

(1− α)
. (19)

The optimal labor ratio is given by

ν∗
t =


(
q̄t/kt−1

)1/(1−α)
= λ1/(1−α) if MCt = Wtλ

α/(1−α)/(1− α) < Pt(
(1− α)Pt/Wt

)1/α
kt−1 if Wt ≤ Pt < Wtλ

α/(1−α)/(1− α)
0 otherwise, i.e., if Pt ≤ Wt.

(20)

Accordingly, the corresponding short-run output is given by q∗t = min(qut , q̄t),
where qut = ((1 − α)Pt/Wt)

(1−α)/αkt−1. In Figure 1, q∗t = qut when demand
constraint is unbinding, i.e., q̄t = q̄ut whereas q∗t = q̄b when it is binding, i.e.,
q̄t = q̄bt . This implies that, in the case of an unbinding demand constraint, a
firm will increase its employment as long as the marginal cost is below the
output price. For future reference we state this observation as a remark.

Remark 1. If Pt > Wt/F
′(nt) = Wt/{(1−α)kα

t−1n
−α
t } and F (nt) = kα

t−1n
1−α
t <

q̄t, the firm can increase profit by increasing the number of workers employed.

In what follows, the notation ν̄t denotes the labor-capital ratio under a
demand constraint, i.e., ν̄t = (q̄t/kt−1)

1/(1−α). Also, νc,t and λc,t respectively
denote the labor-capital ratio and the constraint ratio that minimizes the
average direct cost. For a given kt−1 and input prices, Figure 2 depicts the
marginal cost curve and average direct cost curve, for two different levels of
labor-capital ratios ν̄1 < ν̄ and ν̄2 > ν̄, corresponding to the different levels
of the demand constraint. We also define the following relationship between
the marginal and average direct costs for future reference:

Remark 2. The marginal cost, MC(Wt, ν̄t), is higher (lower) than the min-
imum of the average direct cost, a∗t , if ν̄t is larger (less) than νc,t.

2.2.2 Investment Decision

In determining the amount of investment, which is the difference between
the desirable and actual amount of capital stock18, the firms employ the

18This formulation is due to Clark (1917). A more general formulation is known as
the flexible accelerator model: “capital is adjusted toward its desired level by a constant
proportion of the difference between desired and actual capital.” (Jorgenson 1971, p.
1111)
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investment criterion developed by Minsky (1986, 2008). These boundedly
rational firms are assumed to naively judge the profitability of new investment
on the basis of static expectations about prices and demand19.

1. The Demand Price of Capital Stock

Lemma 1 below states that, under static expectations about prices (output
price, wage rate, interest rate), the following two conditions are equivalent:
(1) the present value of the stream of quasi-rents is greater than the price
of investment goods, and (2) output price is greater than the minimum av-
erage direct cost. This implies that, provided that prices are expected to
be constant over time, the firms undertake new investment only when the
output price exceeds the average direct cost, namely Pt ≥ a∗t

20. Therefore,
if Pt > a∗t , a firm would increase investment as long as the supply capac-
ity is below the expected demand due to the linearly homogenuity of the
production function.

A firm facing input prices (Wt, Ut) sets a cost-minimizing labor-capital
ratio for production if it can freely choose both capital stock and labor:

min
n,k

(Utk +Wtn) subject to kαn1−α ≥ 1. (21)

The minimum average direct cost of (21) is denoted by a∗t . The desirable
capital-labor ratio, (k/n)∗, is derived by the first-order condition for (21):(k

n

)∗
=

(K
N

)∗
=

αWt

(1− α)Ut

. (22)

Hence, νc,t = (1 − α)Ut/(αWt), and λc,t = ν1−α
c,t with a∗t = minν at(ν) =

at(νc,t). Now, suppose that the firm expects all the prices (including wages
and interest rate) to stay constant at the current level, e.g., Pt = Pt+1 = . . .,

19This assumption is justfied by the fact that investment is decision-making under un-
certainty. According to Keynes, an entity making a decision under uncertainty assumes
that “the present is a much more serviceable guide to the future than a candid examination
of past experience would show it to have been hitherto” (Keynes 1937, p. 214).

20The equivalence is consistent with the observations made by Minsky: “capital assets
yield profits because the output they produce commands a price that exceeds unit out-of-
pocket costs. Such a price in excess of the out-of-pocket costs is due to the scarcity of the
output and therefore of the capital assets needed to produce the output.” (Minsky (1986),
p. 179)
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Wt = Wt+1 = . . ., and so on. Under this assumption, let us derive the level
of quasi-rents generated by one unit of capital, i.e., kt = 1. For j = 1, 2, . . .,
from the cost minimization in (22), the levels of labor input and output are
given by

nt+j = (1− δ)j−1 (1− α)Ut+j

αWt+j

, (23)

and

qt+j = (1− δ)j−1

(
(1− α)Ut+j

αWt+j

)1−α

,

respectively. Therefore, the wage payment is given by

Wt+jnt+j = (1− δ)j−1 (1− α)Ut+j

α
.

Let PK(Pt,Wt, Ut, ρ) denote the capitalized value (with the rate of time pref-
erence ρ) of the stream of quasi-rents (from the next period on) that one unit
of capital stock is expected to yield. In other words, PK(·) is the demand
price of a capital asset21. Then, from the static price expectation, we have

PK(Pt,Wt, Ut, ρ) =
∞∑
j=1

1

(1 + ρ)j
πq
t+j(Pt,Wt, Ut)

=
∞∑
j=1

(1− δ)j−1

(1 + ρ)j

[
Pt

(
(1− α)Ut

αWt

)1−α

− (1− α)Ut

α

]

=
1

ρ+ δ

[
Pt

(
(1− α)Ut

αWt

)1−α

− (1− α)Ut

α

]
. (24)

We can interpret PK(Pt,Wt, Ut, ρ) as the demand price of a productive capital
asset. The greater the excess of a price of capital asset over its supply price
Pt−1, the more attractive a new investment project22.

The marginal efficiency of capital ρ̂ in this context is the rate of time
preference that makes PK(Pt,Wt, Ut, ρ) equal to the supply price of capital

21See Minsky (1986) and (2008).
22According to Minsky, the value of ρ depends on the interest rate and the virtue of

liquidity, which reflects uncertainty felt by entrepreneurs, households, and bankers. See
Minsky (1986), Chapter 8, and Minsky (2008), Chapter 5.
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Pt−1
23: i.e.,

PK(Pt,Wt, Ut, ρ̂) = Pt−1. (25)

Lemma 1. Under the static price expectation, the following four condi-
tions of profitability are equivalent: (L1) PK(Pt,Wt, Ut, rt) > Pt−1, (L2) the
marginal efficiency of capital exceeds the interest rate, i.e., ρ̂ > rt, (L3) the
one-period quasi-rent exceeds the user cost of capital, i.e., πq

t > Ut
24, and

(L4) the output price exceeds the minimum average direct cost, i.e., Pt > a∗t .

Proof. See, Appendix B.

The next corollary is a direct consequence of Lemma 1. It says that, if
the output price equals the minimum direct average cost, a new project will
break even .

Corollary 2. PK(a∗t ,Wt, Ut, rt) = Pt−1

Regardless of the level of aggregate demand, if any of the above prof-
itability conditions fails to hold (including break-even projects), the firm will
refrain from investment. Otherwise, the level of investment will depend on
the demand constraint.

2 Demand Constraint

The level of current investment affects productive capacities in future periods.
However, we assume that our bounded rational firms ignore the effects of new
investment beyond the next period and thus have an investment horizon of
two periods. In other words, in each investment decision, they focus only
on the resulting profit in the next period. As the market conditions change,
they think that they will have chances to adjust the level of desired capital
upon receiving new information in later periods. In other words, they make
a series of tentative investment plans.

The firms compute the cost-minimizing capital-labor ratio for period t+1
on the basis of Wt and Ut. They calculate k∗

t so that the resulting productive

23Keynes defined the marginal efficiency of capital as “the rate of discount which would
make the present value of the series of annuities given by the returns expected from the
capital asset during its life just equal its supply price” (Keynes 1936, p. 135)

24Since πq
t − Utkt−1 = πg

t , the inequality πq
t = (Ptqt − Wtnt)/kt−1 > Ut implies that

πg
t = (πt + Pth̄Nf )/kt−1 > 0. Accordingly, condition (L3) can be expressed as πg

t > 0.
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capacities just cover the expected demand in period t+1, i.e., q̄t+1
25. Provided

that Pt > a∗t , this procedure will result in the maximum profits because the
production function is linearly homogenous, and it is profitable to produce as
much as demand allows. Following an argument similar to the one followed
in the previous subsection, we see that it is unprofitable for the firm to
build new capital stock ζkt−1 beyond the demand constraint. Therefore, if
k∗
t > (1− δ)kt−1, z

∗
t + (1− δ)kt−1 ≤ k∗

t . Otherwise, z∗t = 0, so that

ζ∗ ≤ max
(
ηtλ

′
t+1 − (1− δ), 0

)
,

where ηt(Wt, Ut) = {αWt/
(
(1 − α)Ut

)
}1−α. Each additional unit of invest-

ment yields the present value of quasi-rents, PK(·), while incurring Pt−1 as
the cost. Therefore, using investment ratio ζ results in the generatation of
the expected present value of gross profits, πζ

t :

πζ
t (ζt;λ

′
t+1, kt−1) = PK(Pt,Wt, Ut, rt)kt−1

×
[
min

{
max

(
ηt(Wt, Ut)λ

′
t+1 − (1− δ), 0

)
, ζt

}]
− Pt−1ζtkt−1. (26)

From equation (22) and the production function, we compute the desired
level of capital as

k∗
t =

( αWt

(1− α)Ut

)1−α

q̄t+1.

If no investment is undertaken in period t, the amount of capital that will
be available at the beginning of period t+ 1 is (1− δ)kt−1. Hence, the level
of profit-maximizing investment is given by

z̄t = max
(( αWt

(1− α)Ut

)1−α

q̄t+1 − (1− δ)kt−1, 0
)
. (27)

Thus, the profit maximizing investment ratio, ζ̄t, is given by

ζ̄t =

{
max

((
αWt

(1−α)Ut

)1−α

λ′
t+1 − (1− δ), 0

)
(Pt > a∗t )

0 (Pt ≤ a∗t ).
(28)

25With a new investment zt, zt+(1−δ)kt−1 units of capital stock will be available at the
beginning of the next period that can produce output qt+1 = (zt+(1−δ)kt−1)/{αWt/

(
(1−

α)Ut

)
}1−α.If this quantity of supply exceeds the demand constraint q̄t+1, the firm expects

that it will need to cut output price to increase sales. This will give rise to a kinked
demand curve for a capital asset. Assuming that the perceived demand curve is kinky
enough to induce the firm to build just enough productive capacity to cover the demand
constraint, we can follow a procedure similar to the one used for the output decision.
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The following lemma, which directly follows from (28), gives the necessary
conditions for a positive investment:

Lemma 3. If ζ̄t > 0, then Pt > a∗t (hereafter referred to as “AC condition”)
and {αWt/

(
(1− α)Ut

)
}1−αλ′

t+1 > (1− δ) (hereafter referred to as “demand
condition”).

The expected total quasi-rents, π̂, minus cost of investment are given by

π̂(νt, ζt;λt, λ
′
t+1kt−1) = πν(νt;λt, kt−1) + πζ(ζt;λ

′
t+1, kt−1)

=
{
Pt min(ν1−α

t , λt)−Wtνt
}
kt−1 + PK(Pt,Wt, Ut, rt)kt−1

×
[
min

{
max

(( αWt

(1− α)Ut

)1−α

λ′
t+1 − (1− δ), 0

)
, ζt

}]
− Pt−1ζtkt−1.

(29)

For given (Pt,Wt, rt, Ut, Pt−1), the firm chooses employment and investment
ratios in each period to maximize π̂(νt, ζt;λt, λ

′
t+1, kt−1). The model is closed

if (λt, λ
′
t+1) are specified. A dynamic version of the model is beyond the

scope of the current paper (cf. Takahashi and Okada (2013)). We examine
a steady-state equilibrium below.

3 Steady-State Equilibrium

This section shows the existence of a unique steady-state equilibrium (SSE)
and its properties. In particular, we examine the effects of the propensities to
consume, cy and cw, and the real compensation to overhead employees, H̄, to
aggregate levels of output and quasi-rents. The analysis will help understand
how these parameters affect the stability of Keynesian temporary equilibrium
and the long run performance of the economy.

In a steady-state equilibrium, values of all variables stay constant, e.g.,
Sss = St−1 = St, and Lt−1 = Lt, and so on. The following lemma gives a set
of six equations that summarizes a steady-state equilibrium.

Lemma 4. (Qss, Kss, rss, Yss, Pss,Wss) is a steady-state equilibrium if the
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following six equations are satisfied:

Qss = Kα
ssN̄

1−α (30a)

Kss

N̄
=

α

(1− α)(rss + δ)

(Wss

Pss

)
(30b)

Yss

Pss

=

(
H̄ +

Wss

Pss

)
N̄ + rssKss (30c)

(1− cy)
Yss

pss
= cwKss (30d)

Qss =
Yss

Pss

+ δKss (30e)

M̄ = σr−β
ss Yss (30f)

Proof. By (4), Nss = N̄ . Hence equation (30a) follows from the production
function. By (17), Yss = PssCss = cyYss + cwPssKss, which gives (30d). By
equation (8), Zss = δKss. Hence, from (12), we get Qss = Css + δKss =
Yss/Pss + δKss, hence (30e). Equation (30c) directly follows from equation
(10), the definition of Y . Substituting Uss = Pss(rss + δ) into (22) yields
Kss/N̄ = αWss/{(1 − α)Pss(rss + δ)}, hence (30b). Eqaution (30f) directly
follows from (2).

The following result states that there exists a unique steady-state equi-
librium under the reasonable parameter restriction.

Proposition 1. Let H̄ ′ ≡ (c′+δ−δ/α)(c′+δ)1/(1−α). If and only if 0 ≤ H̄ <
H̄ ′, there exists a unique steady-state equilibrium, (Qss, Kss, rss, Yss, pss, wss)
with rss > 0. Moreover, in the steady-state equilibrium, the capital-output
ratio is

ηss = {cw/(1− cy) + δ}−1 (31)

and labor-capital ratio is νss = {cw/(1− cy) + δ}1/(1−α).

Proof. See Appendix C.

In what follows, we will examine the stability of a short run equilibrium
near the steady state. An interesting question is whether the steady-state
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equilibrium itself is stable or not26. The following lemma shows that the
compensation to overhead employees including managers (compensation to
overhead employees) create gap between output price and average indirect
cost, which will contribute to enhance stability. Our steady-state equilib-
rium coincides with the steady-state of descrete-time version of Ramsey-
Cass-Koopmans growth model if their consumers have time preference rate
that happens to be the steady-state interest rate27.

Lemma 5. In a steady-state equilibrium, Pss/a
∗
ss = 1 − H̄(c′ + δ)α/(1−α).

Therefore, as H̄ increases, the ratio of price level relative to average direct
cost, i.e., Pss/a

∗
ss, rises. In particular, when H̄ = 0, Pss = a∗ss.

Proof. See Appendix D.

Now we are in a position to ask how the parameters, e.g., H̄, cy and cw,
affect the steady-state variables. The next proposition summarizes the effects
of the propensities to consume and the compensation to overhead employees:

Proposition 2. The real steady-state variables, Kss, Qss, Yss/Pss, are de-
creasing in cy, cw and independent of H̄. The real wage Wss/Pss is increasing
in cy and cw if α < 1/2 and decreasing otherwise. The nominal income and
wage rate, Yss, Wss and price Pss are increasing in cy and cw, hence real
money supply M̄/Pss is decreasing in them. In contrast, as H̄ increases,
nominal variables rss, Yss, Pss, Wss, as well as real wage Wss/Pss decrease.

Proof. See Appendix E.

The intuition behind Proposition 2 is as follows: a rise in either propen-
sity (i.e., cy or cw) reduces saving, thereby raising the interest rate. This
discourages investment, thus decreasing the quantity of productive capital.
This in turn reduces output and real wage rate. A higher interest decreases
money holding, so that Yss must expand to keep money demand constant.
This implies that Pss should rise. A rise in interest rate has opposing effect

26In many models, a steady-state equilibrium is an anchor point. For example, in
Ramsey-Cass-Koopmans model, the economy attains equilibrium at the steady-state point
by moving along the saddle path toward the point. Once, arrived at the point, there is no
further change in consumption or investment.

27In our model, the marginal productivity of capital per worker is α(K/N)1−α, there-
fore, the Keynes-Ramsey condition (the Euler equation) in Ramsey-Cass-Koopmans model
reduces to, α(K/N)1−α = δ + ρ = δ + rss (See, e.g., Wickens (2008), p. 21.), which is
equation (30b) in our model.
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on real wage rate. Since labor is a substitute of capital, a rise in rss pushes up
Wss/Pss. On the other hand a reduction in Kss lowers the labor productivity,
reducing the real wage. The former effect dominates if α < 1/2.

The effects of H̄ is a distributional one, and does not affect the real macro
variables, such as Kss, Qss and Yss/Pss. A rsie in H̄ benefits managers but
will hurt rentiers, shareholders, and workers.

Further, noting that, by the first-order condition (22), Wssnss/(1− α) =
Wssnss + Ussnss, in a steady-state, we verify that the marginal cost in the
steady-state, denoted byMCss, is equal to the average direct cost ass: MCss =
Wss/F

′(nss) = Wssnss/{(1 − α)kα
ssn

1−α
ss } = a∗ss. If the economy in period t

is in a steady-state, the output price P ′ in Figure 1 equals a∗ss. For H̄ > 0,
from lemma 5, the steady-state output price Pss is strictly greater than a∗ss
so that the firms are demand constrained even in the steady-state, which we
state as a remark.

Remark 3. If H̄ is positive, the firm faces demand shortage even in the
steady-state, namely Pss > MC(qss) = ass.

To examine the stability of a short run equilibrium near the steady-state
equilibrium, Keynesian temporary equilibrium is formally defined.

4 Keynesian Temporary Equilibrium

This section defines Keynesian temporary equilibrium (KTE) and examines
conditions for which a KTE exists under the assumption that the economy
stayed in a steady-state equilibrium up to period t− 1. Then, by examining
the relationship between the compensation to overhead employees and the
range of KTE, we show that if the compensation is zero, no KTE with unem-
ployment exists, and that the range of KTE expands as the the compensation
increases.

4.1 Definition of Keynesian Temporary Equilibrium

Expecting the current price level to be Pt and the aggregate effective demand
to be Qt at the beginning of period, the firms are choosing the levels of in-
vestment and employment, hence also output, under the constraints on their
demand. These decisions collectively determine the aggregate level of income,
thus also consumption, generating aggregate demand. Roughly speaking, in
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a Keynesian temporary equilibrium, the resultant aggregate demand is con-
sistent with the initial expectation about the aggregate demand, i.e., Qt

28.
Our equilibrium concept is similar to “Keynes-Negishi equilibrium” (Negishi
(1979), Drèze and Herings (2008))29. The equilibrium concept also requires
that the money wage rate and interest rate are consistent with their mar-
ket conditions. In this section, we continue to assume that all the firms are
identical. Let Ωt denote a set of the predetermined macroeconomic variables,
i.e.,

Ωt = (Kt−1,Wt, rt, Yt−1, Pt−1, Pt−2,Wt−1, Nt−1).

We define a Keynesian temporary equilibrium as follows:

Definition 2. AKeynesian temporary equilibrium is defined by (Pt, Qt,Ωt, x̄t),
where Pt, Qt, Ωt, and xt are the expected price level, the expected aggre-
gate demand, a set of predetermined macro-variables, and a pair of strategies
x̄ = (ν̄t, ζ̄t) such that:

1. Facing demand constraints, λt = λ′
t+1 = Qt/Kt−1, each firm chooses ν̄t

and ζ̄t that maximize π̂t in eq. (29) so that equations (20) and (28)
are satisfied. The resultant aggregate employment and investment are
Nt = ν̄tKt−1 and Zt = ζ̄tKt−1 respectively.

2. The output price is higher than the marginal cost, i.e., Pt > MC(Wt, ν̄t).

3. The resultant investment is strictly positive so that, from lemma 3,

Pt > a∗t =

(
Ut

α

)α (
Wt

1− α

)1−α

and
( αWt

(1− α)Ut

)1−α

λ′
t+1 > (1− δ).

4. The aggregate demand equals the aggregate supply:

Qt = Kα
t−1N

1−α
t = Ct + Zt, (32)

28This property is innocuous in the short-run. Keynes notes, “... the theory of effective
demand is substantially the same if we assume that short-period expectations are always
fulfilled” (Keynes (1973), p. 181)

29The rigidity of wage rate is endogenously resulted from kinks in perceived labor supply
function in Negishi (1979) whereas our model simply assumes contemporaneous wage
rigidity. In Negishi (1979), investment is exogenously given whereas it is endogenous in
our model. Drèze and Herings (2008) proved the existence of “Keynes-Negishi equilibrium”
in general equilibrium setting. The terminology “Keynes-Negishi equilibrium” was coined
by them.
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which is also expressed as

Pt(Qt − Zt) = cyYt + cwPt−1Kt−1, (13′)

where Yt = Pt−1H̄N̄ +WtNt + rtPt−1Kt−1.

5. The money market is in equilibrium so that the interest is set to satisfy
eq. (3), i.e., rt = (σYt−1/M̄)1/β.

6. The nominal wage rate, Wt, is set so that

Wt −Wt−1

Wt−1

= βw

(Nt−1 − N̄

N̄

)
+

Pt−1 − Pt−2

Pt−1

.

Some comments are in order. First, for expositional convenience, we
require λt = λ′

t+1, that is, the firms expect the demand for the current
period and the long-run expected demand for investment decision are the
same. This assumption seems reasonable if one period is short. Second, the
condition that Pt > MCt (hereafter called MC condition) implies that the
demand constrain λt is actually binding. Third, the profitability condition
Pt > a∗t in condition 3 implies that output price is higher than the shut-down
price, i.e., Pt > Wt, Therefore, ν̄t > 0 from eq. (20). Consequently, with the
assumption of static expectations about prices, each firm makes investment
and employment decisions on the basis of the perceived demand function,
characterized by (Pt, λt). Finally, it follows from the first condition of KTE,
λ′
t+1 = Qt/Kt−1, that λ′

t+1 = ν̄1−α. Denoting ηt = (αWt)/{(1 − α)Ut}1−α,
the ‘demand condition’ can be expressed as ηtν̄

1−α > 1− δ.

4.2 The Existence of KTE

We examine the existence of KTE in period t assuming that the economy
remained in the steady-state equilibrium up to period t − 1. In addition to
mathematical tractability and expositional simplicity, we think this assump-
tion to be reasonable for the following reasons. First, if there were no KTE
near the steady-state equilibrium, it is unlikely for any KTE to exist. Sec-
ond, if a steady-state equilibrium is stable in our model as it is the case in
Ramsey-Cass-Koopmans growth model, the economy is likely to remain near
the SSE once it is achieved. One typical such situation is a KTE that arises
when an economy departs from the SSE one period before. Using Fisher’s
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simile of a ship quoted earlier, we treat an original stable position as a SSE,
and a ship, which is tipped by some force from the original position, as an
economy in a KTE. Before asking below to what extent the ship is stable,
we will examine the existence and the properties of KTE.

Let νδ satisfy the level of ν that satisfy the ‘demand condition’ with
equality, i.e., ηssν

1−α
δ = 1 − δ. (Thus, KTE exists only when ν̄ ≥ νδ.) The

following lemma, which states that the output price increases more rapidly
than the marginal cost as aggregate demand increases, is necessary for sta-
bility analysis.

Lemma 6. Assume that an economy had stayed in a steady-state equilibrium
until period t − 1. If cw < (1 − α)(1 − cy) and α < cy, then dP (ν̄)/dν̄ >
dMC(Wt, ν̄)/dν̄ for ν̄ ∈ (νδ, ν1).

Proof. See Appendix F.

To prepare for proving the existence of KTE, let the labor endowment be
denoted by Nmax (> N̄), and the maximum attainable labor-capital ratio by
ν1 = Nmax/Kss. Further, it is shown below that, there is a threshold value
of H̄, denoted by H̄δ, such that for H̄ ∈ [0, H̄δ), ν

′ can be defined as the
level of ν that satisfies the ‘AC condition’ with equality, i.e., Pt(ν

′) = a∗ss,
and that such a ν ′ exists between νδ and νss. Given that H̄ is less than
H̄δ, if the aggregate demand is small enough to satisfy ν̄ ∈ (νδ, ν

′), the
firms do not undertake new investment because the ‘AC condition” fails to
hold although the “demand condition” is satisified. Moreover, the aggregate
demand needed to raise the price level above the average direct cost decreases
as the compensation to overhead employees increases.

Lemma 7. If H̄ = H̄δ, ν
′ = νδ. For H̄ < H̄δ, the value of ν ′ is greater than

νδ and increases as H̄ decreases. If H̄ > H̄δ, for all ν̄ > νδ, P (ν̄) > a∗ss.

Proof. See Appendix G.

Denote ν0 = max(νδ, ν
′). The following proposition shows that there are

multiple Keynesian temporary equilibriua around SSE if H̄ > 0. (Figure 3)

Proposition 3. For each ν̄t ∈ (ν0, ν1], there exists a corresponding KTE,
denoted by

(
Pt(ν̄t), ν̄

1−α
t Kss,Ωt, (ν̄t, ζ̄t)

)
, where ζ̄t(ν̄t) = ηssν̄

1−α
t − (1−δ) and

Pt(ν̄t) =
cyWtν̄t + Ess

ν̄1−α
t − ζ̄t

, (33)

where Ess = PssCss/Kss − cyWssνss.
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Figure 3: Output Price Curves for Different Values of H̄
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Proof. Let λt = λ′
t+1 = ν̄1−α

t . Suppose that ν̄t ∈ (ν0, νss), then by definition
of ν ′ and remark 2, Lemma 7 implies that MCt(Wt, ν̄t) < a∗t < Pt(ν̄t). By
lemma 5, Pt(νss) = Pss ≥ a∗ss ∀ H̄ ≥ 0. Then, by lemma 6 and remark 2, for
ν̄t ∈ [νss, ν1], Pt(ν̄t) > MC(Wt, ν̄t) ≥ a∗ss. Thus, ν̄t satisfies (20). Moreover,
ηssν̄

1−α
t > 1 − δ since ν̄t > νδ. Therefore, ζ̄(ν̄t) satisfies (28). By (33),

goods market equilibrium (32) is achieved at ν̄t. Since Yt−1 = Yss, rt = rss.
Moreover, Wt = Wss since Nt−1 = Nss = Nf , and Pt−2 = Pt−1 = Pss.
Consequently, conditions 5 and 6 are fulfilled.

Corollary 8. Assume that an economy with H̄ = 0 has stayed in a steady-
state up to period t− 1. Then there is no Keynesian temporary equilibrium
with unemployment.

Proof. By Lemma 5, if H̄ = 0, Pss = ass. If there were a KTE with un-
employment, it must be the case that Nt < Nss = N̄ , hence ν̄t < νss. This
implies, by lemma 6, that Pt < a∗t = ass, thus violating the profitability
requirement, Pt > a∗t .

Proposition 3 together with lemma 7 implies that the range of KTE equi-
libria expands as H̄ increases.

5 Stability of Keynesian Tmporary Equilib-

rium

Now we are ready to ask how stable a Keynesian temporary equilibrium is,
and when the equilibrium is upset what will be the consequence. In this
section, we first define the degree of robustness of a KTE using the stability
concept developed by Swinkels (1992). Then, we show that the equilibrium is
most easily upset to precipitate the economy into debt-deflation when a cer-
tain population of firms stop investing. Finally, we investigate what factors
and to what extent these factors influence the degree of stability. We will
show that, the more actively firms undertake investment and the larger the
compensation to overhead employees, the more robust the economy becomes.
In particular, if the compensation is zero, any steady-state equilibrium is un-
stable. Throughout this section, the output price, which reflects the scarcity
of capital goods, plays an essential role.
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5.1 Mutants and Spillover Effect

Supose that an economy in period t is in a Keynesian temporary equilibrium
in which incumbent firms play a pair of strategy, x̄ = (ν̄, ζ̄). Throughout
the section, we ommit time subscript t whenever obvious. We treat a firm
playing x̂ = (ν̂, ζ̂) ̸= (ν̄, ζ̄) as a mutant30. Imagine that, all of a sudden,
facing a need to liquidate debt, or to restore health in balance sheet, a certain
fraction of firms reduce investment. Or, out of some exogenous shocks, e.g.,
foreign-originated financial contraction or natural disaster, just imagine some
fraction of firms become pessimistic about the future, thus refraining from
investment.

In defining the robustness of a KTE, we use stability concept similar
to Swinkels’s (1992) equilibrium evolutionarily stable (EES) sets31. Let θ
(index for firms) be distributed uniformly between [0, 1]. We say a group of
of population size ϵ with mutant strategy x̂ = (ν̂, ζ̂) enters the economy of
incumbent strategy pair x̄ = (ν̄t, ζ̄t) in period t if the following two sets of
conditions hold:

(1) ∀θ ∈ [0, ϵ], xt(θ) = x̂, and
(2) ∀θ ∈ (ϵ, 1], xt(θ) = x̄.
Let N̂ = ν̂Kt−1 and Ẑ = ζ̂Kt−1 denote the total employment and invest-

ment under an assumption that all players become entrants. We denote the
post-entry value of X by X̃. Then, the entry of mutants cause changes in the
aggregate employment, output, and investment so that Ñ(ϵ, ν̂) = (1− ϵ)Nt+
ϵN̂ , Q̃(ϵ, ν̂) = Kα

t−1

{
(1− ϵ)N1−α

t + ϵN̂1−α
}
and Z̃(ϵ, ζ̂) = (1− ϵ)Zt + ϵẐ, re-

spectively. The employment strategy of mutants change both the aggregate
demand and supply. In contrast, their investment will affect only the ag-
gregate demand due to the one-period time lag required to build productive
capital. It is convenient to define a post-entry environment:

Definition 3. Define E(ϵ, x̂) as an economy that arises after a group of mu-
tants of a population ϵ with the strategy x̂ enter an economy in a Keynesian
temporary equilibrium, in which the incumbents play a strategy x̄.

30Introducing mutants will make the stability analysis of an equilibrium more compelling
whereas the representative agent models cannot as Kirman (1992) stated: “it is contradic-
tory to begin with a single representative agent and then to envisage different individual
actions which lead the economy back to equilibrium” (p. 121).

31In Swinkels (1992), each player has finite pure strategy set and is allowed to play
mixed strategy. Here, since their strategy sets are infinite, either a mutant or incumbent
plays a pure strategy.
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We also denote the set of best responses to the post-entry environment
by BR(E(ϵ, x̂)). Mutants are endowed with the restricted ability to select
a strategy which best responds to the post-entry environment. We require
robustness only against such mutants32. The mutant strategy x̂ is called
equilibrium entrants if it is a best reply to E(ϵ, x̂) (Swinkels, 1992).

Regarding the demand constraint, by Assumption 1, a change in aggre-
gate demand, which is equal to the change in output, affects all firms across
the economy in proportion to their capital stock, i.e., kt−1(θ). Therefore,
each firm, whether it may be a mutant or an incumbent, perceives its de-
mand constraint ratio to be λ̃(ϵ, ν̂) = (1 − ϵ)ν̄1−α

t + ϵν̂1−α. For instance, if
the aggregate demand increases, then all the firms can enjoy its proportional
share33. The following remark is a consequence of this assumption.

Remark 4. For ∀ϵ ∈ (0, 1), if ν̂ < ν̄t, then ν̂1−α < λ̃(ϵ, ν̂). Conversely, if
ν̂ > ν̄t, then ν̂1−α > λ̃(ϵ, ν̂).

A similar argument applies to a mutant who sets a lower investment ra-
tio than that of incumbents, i.e., ζ̂ < ζ̄t. Intuitively, the aggregate future
demand, that is equal to the aggregate productive capacity by the free move-
ment of price, will be proportionally distributed among producers. Hence,
some part of demand foregone by mutants will spill over to other producers.
We set out this observation as another remark:

Remark 5. If ζ̂ < ζ̄t, then the mutants expect unbinding demand constraint
in period t+ 1. (For more detail, see Appendix H.)

5.2 Stability of Keynesian Temporary Equilibrium

There are various strategy options that are available to mutants. Some mu-
tants may employ small amount of labor but undertake a large volume of
investment. Others may undertake no investment. To each combination of
strategy pairs played by incumbents as well as mutants corresponds a min-
imum required population of mutants, ϵ, that can upset the KTE. In what

32The idea is that mutants playing a strategy which is not an optimal one will disap-
pear, being replaced by those who are best responding to post-entry environment. Notice
though, unlike in Swinkels (1992), our agents are endowed with the limited capacity and
foresight.

33This assumption is consistent with the observation made by Tobin: “In demand con-
strained regimes, any agent’s increase in demand—for example, more investment spending
by a business firm—has positive externalities.” (Tobin (1993), p. 50)
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follows, we seek a pair of mutants’ strategy (ν̂, ζ̂) ̸= (ν̄, ζ̄) that enable the
mutants to invade successfully with the smallest population. In other words,
the KTE is stable if mutants come in less than this population share. To
make the meaning of the stability precise, we need to define robustness of a
KTE as follows.

Definition 4. A Keynesian temporary equilibrium is said to be robust with
a degree of ϵ̂ against equilibrium entrants if there exists x̂′ such that x̂′ ∈
BR(E(ϵ̂, x̂′) and condition (34) below holds for all x̂ ̸= x̄ and ϵ ∈ (0, ϵ̂)

x̂ /∈ BR(E
(
ϵ, x̂)

)
. (34)

We call ϵ̂ an invasion barrier (see Chapter 2 of Weibull (1995), for a
detailed discussion) and x̂′ the most destructive strategy.

1. Intuitive explanation of main results

At individual level, a unilateral increase in employment by a mutant should
not be profitable because most of the new demand it has created will spill
over to other firms. Similarly, a unilateral reduction in profitable employ-
ment should be also harmful because it would forego some of the current
demand due to the insufficient production capacity. The same argument ap-
plies to the investment decision; a unilateral increase in investment spending
will make a mutant worse off due to the spill-over effect while a unilateral
reduction in profitable investment will make it worse off by foregoing some of
future demand due to the insufficiency of production capacity. Intuitively, a
decrease in investment spending is justifiable only when the resulting reduced
price makes new investment no longer profitable. On the other hand, if the
mutant producess as much as other firms, the current period aggregate de-
mand remains the same because price falls promptly to expand consumption
demand to cancell out the reduced investment spending by mutants until the
aggregate demand becomes equal to the current level of supply. These con-
siderations suggest that the most destructive mutant type is (ν̂, ζ̂) = (ν̄t, 0).
The next question is how big their population should be to upset an equilib-
rium. The larger the level of incumbents’ investment, the higher the output
price becomes. Therefore, a larger size of mutants is required to reduce the
price low enough to stop investing in new projects. Lemma 9 formally states
these intuitions.
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Figure 4: Choice of ν̂

　 The entry of mutants will affect the aggregate supply and demand,
thus causing the post-entry output price to change. Intuitively speaking, in
what follows we demonstrate that the equilibrium entrants that upset the
KTE most effectively should be able to bring the post-entry price below the
direct average cost so that new investment becomes no longer profitable.
Those mutants can efficiently reduce aggregate excess demand by producing
as much as incumbents but stopping investment.

Figure 4 depicts, for given ζ̂ = 0, the equilibrium output price P̃0(ϵ, ν̂)
as a function of ν̂ and ϵ. A mutant stops investing when output price falls
below a∗t (the minimum direct average cost) whereas ν̂ becomes the best
responding employment ratio if the postenrty proce equals the marginal cost
MC(Wt, ν̂). Figure 4-(a) illustrates the effect of ν̂ on the required size of
mutants to upset an equilibrium: it shows that an increase in ν̂ from ν̂0 to
ν̂1 shifts P̃0 curve downward, while raising MC(Wt, ν̂) without affecting a∗t .
The figure also shows that, when their size exceeds ϵ1, for either values of
ν̂ (i.e., whether ν̂0 or ν̂1), a new investment is unprofitable. Moreover, we
can verify that ν̂1 becomes optimal, so that the mutants with this strategy
can survive and thrive. In other words, the mutants can effectively upset the
equilibrium with smaller population by playing the employment strategy ν̂1,
than by playing ν̂0.

In contrast, Figure 4-(b) shows that, if ν̂ is below the threshold value
ν, then the equilibrium output stays higher than Pt so that mutants with
no-investment strategy cannot survive. Intuitively, the significant reduction
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of the current output on the part of mutants by hiring less workers will push
up output price. The benefit of this price rise goes to other firms as well.
However, they do not bear cost of output reduction as mutants do. As a
result, the mutants cannot survive.

Increasing ν̂ beyond ν̄t is unprofitable because the increased consumption
resulted from the increased employment would spill over to other firms. For
the same reason, an increase in ζ̂ will be unprofitable: the increased demand
generated by increased investment demand will spill over to the other firms
in the form of higher output price.

2. Main Results

To describe the above intuition formally, take a KTE with x̄t as given. For
a given post-entry price P in E(ϵ, (ν̂, ζ̂)), let Ed(p, ϵ) denote the value (in
money term) of aggregate excess demand:

Ed(P, ϵ, ν̂, ζ̂) = cy
(
Pt−1H̄ +WtÑt + rtPt−1Kt−1

)
+ cwPt−1Kt−1 − P (Q̃t − Z̃t)

(35)

= Yt − (St − St−1) + cyWt

(
Ñt(ϵ, ν̂)−Nt

)
− P

{
Q̃t(ϵ, ν̂)− Z̃t(ϵ, ζ̂)

}
.

(36)

The post-entry market clearing price, denoted by P̃ , is determined so that
Ed(P̃ , ϵ, ν̂, ζ̂) = 0. Hence, we have

P̃ (ϵ, ν̂, ζ̂) =
cy(Pt−1H̄ +WtÑt(ϵ, ν̂) + rtPt−1Kt−1) + cwPt−1Kt−1

Q̃t(ϵ, ν̂)− Z̃t(ϵ, ζ̂)
(37)

=
CN − ϵ(ν̄ − ν̂)cyWt

(1− ϵ)CR + ϵ
{
ν̂1−α −max(ζ̂ , 0)

} . (38)

Noting by remark 2 that the marginal cost is below the average direct cost
if labor-capital ratio ν is less than the cost minimizing level νct, we express
the above intuition now formally:

Lemma 9. Let ηt > 1 and ν0 be defined by ηtν
1−α
0 = 1 − δ. Let ϵ̄ be the

value of invasion barrier at ν̄ = νct. Assume that ν0 < ν̄ ≤ νct. Then, the
most destructive strategy of mutants is (ν̄, 0). For all ν̄, the value of invasion
barrier ϵ̂ is increasing in H̄. Then, ϵ̂ is increasing in ν̄ if ηt > 1/(1− ϵ̄).

Proof. See Appendix I.
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Lemma 9 says that the amount of salary payments to overhead employees
work as a margin of safety that ensures the profitability of investment.

The following result is the counterpart of lemma 9. If ν̄t is greater than the
cost minimizing employment ratio, νc,t, the best-responding mutants should
choose νc,t instead of mimicking the incumbents’ ratio ν̄t because the incum-
bents employment ratio ν̄t is less attractive than νc,t for their purpose of
reducing the output price.

Lemma 10. Assume that ηt > 1 and νct ≤ ν̄. Then, the most destructive
strategy of mutants is (νct, 0). For all ν̄ and ν̄, the value of invasion barrier
ϵ̂ is increasing both in H̄ and ν̄.

Proof. See Appendix J

To obtain more concrete results, suppose that the economy has been in a
steady-state equilibrium up until period t−1. This implies that the assump-
tion of the previous lemma holds since in any KTE with unemployment, the
labor-capital ratio is less than the cost-minimizing ratio.

Proposition 4. Assume that H̄{cw/(1−cy)}1/(1−α) < δ{(1−δ)(1−cy)/cw−1}
and that an economy has been in a steady-state equilibrium up until period
t−1. Further assume that in -eriod t, an economy is in Keynesian temporary
equilibrium with unemployment, i.e., ν̄t ≤ νss. Then the invasion barrier ϵ̂
increases with ν̄ as well as with H̄.

Proof. See Appendix Appendix K

For the case of a steady state equilibrium, the result is summarized by
Figure 5. If a post-entry aggregate investment is larger than Z̃∗, the post-
entry output price does not fall below the minimum average direct cost, i.e.,
P̃0 > a∗t , thus making zero-investment strategy worse off than incumbents’
strategy ζss = δ. This will diminish the population of the mutants. There-
fore, for successful invasion, their population must be at least as large as
ϵ̂.

The next corollary derives the exact expression of ϵ̂ for a steady state
equilibrium. An increase in H̄, cy, or cw will stabilize an economy in a
steady-state equilibrium

Corollary 11. A steady-state equilibrium is robust with degree of ϵ̂ against
boundedly rational mutant where ϵ̂ = c′(c′ + δ)1/(1−α)H̄/δ. In particular, if
H̄ = 0, the steady-state equilibrium is unstable, i.e., ϵ̂ = 0.

Proof. See the proof of proposition 4.
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Figure 5: Stability of Steady State Equilibrium

6 Implications of the results

We have demonstrated that a KTE is robust up to an invasion barrier, ϵ̄,
against boudedly rational mutants. This means that the equilibrium is ro-
bust against any mutant strategy as far as the mutant population is smaller
than ϵ̄. Conversely, we have found that, if zero-investment mutants enter un-
employment Keynesian temporary equilibrium with population size greater
than the invasion barrier, the output price plunges, thus reducing the demand
price of capital low enough to trigger debt-deflation.

By the way, Fisher argued that only sizable over-indebtedness can trigger
debt deflation: “[w]hen over-indebtedness stands alone, that is, does not
lead to a fall of prices, [...], the resulting ‘cycle’ will be far milder and far
more regular. [...] But if the over-indebtedness is not sufficiently great to
make liquidation thus defeat it self, the situation is different and simpler.
It is then more analogous to stable equilibrium; the more the boat rocks
the more it will tend to right itself” (Fisher (1933), p. 344). One natural
interpretation of zero-investment mutants is those who are forced to stop
investment to liquidate the over-indebtedness. With this interpretation, our
stability results stated above seem consistent with this Fisher’s insight.
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7 Conclusion

We have presented a model with demand-constrained firms which undertake
investment only when a certain level of profits is expected. Then, we have
proved the existence of a unique steady-state equilibrium. Defining Key-
nesian temporary equilibrium and we have shown that there exist multiple
equilibria near the steady-state if compensation to overhead employees is
positive. Our boundedly rational firms take the current output price in ex-
cess of its average direct cost as a summary of future profits. Uncertainty
and unreliable views about future make investment activity as flimsy deci-
sion quickly changeable making. In the spirit of evolutionary game theory,
we have modeled the changing views about future as mutants and explored
the robustness of a temporary Keynesian equilibrium. We have found that a
demand deficient equilibrium exists near the steady-state equilibrium if the
compensation to overhead employees is positive. Our main result is that the
mutant strategy of zero-investment, which may be interpreted as liquidation
of over-indebtedness, capsizes an economy with the smallest population of
mutants. It then reduces the level of output price, hence expected quasi-
rents, low enough to trigger debt-deflation process. We have proved that the
amount of compensation to overhead employees is related with the robustness
of the economy; the larger the amount of payment to overhead employees,
the more robust a Keynesian temporary equilibrium becomes. An increase
in propensities to consume also enhances the stability but reduces the level
of steady-state output.

Regarding the extension of this research, several directions seem interest-
ing. We can incorporate expectation formation about demands and endo-
genize money supply to build a dynamic model that can explore the issue
of dynamic stability and business cycles34. Endogenizing safety margins and
financial structure of the bank and firms seems also interesting avenues.

34See Takahashi and Okada (2013) for this direction.
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Appendix A Employment Decision

Figure 1 describes the labor demand decision of a firm under two types
of demand constraint denoted by q̄t: a binding constraint, e.g., q̄bt , and an
unbinding constraint, e.g., q̄ut

35. In either case, recognizing the difficulty of
selling more than q̄t without reducing the price, our firm perceives a kinked
demand curve which consists of two different parts: a horizontal part D1

and a downward-sloping part D2
36. As the figure suggests, a small change

in real wage rate may not affect employment decision if a firm is demand-
constrained.

Here, we will distinguish price set by individual firm, pt, and market price,
Pt. Now, let us denote the short-run production function by qt = F (nt) ≡
kα
t−1n

1−α
t . If the demand constraint is not binding, that is, if

Pt ≤
Wt

F ′(n̄)
,

then the optimal amount of employment n∗ is nu. Suppose the opposite is
the case:

Pt >
Wt

F ′(n̄)
.

Let ξ denote the right-hand side demand elasticity at q = q̄t. We simply
assume here that demand is inelastic at (Pt, q̄t), thus ξ ≤ 137. Then, the
conditions for the profit maximization are satisfied at (p, q) = (Pt, q̄t):

Pt(1−
1

ξ
) ≤ Wt

F ′(n̄)
, (39a)

Pt >
Wt

F ′(n̄)
. (39b)

Equations (39a) and (39b) say that, when q is at q̄t, the marginal cost is
greater than the marginal revenue but smaller than the output price. Thus,

35The marginal cost is obtained from W/F ′(n) where F (n) is the short-run production
function.

36This shape of perceived demand curve is consistent with Chick’s observation: “the
demand curve will become downward-sloping at some point determined by the market
demand curve and by single firm’s share in the market (Chick (1991), p. 88).

37Even if η > 1, the above conditions can still hold unless the marginal cost, Wt/F
′(n),

is substantially small relative to the output price.
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n∗
t = n̄, which implies that the firm plans to produce a quantity equal to

the expected demand. This leads to equation (40). Define n̄t as the amount
of employment required to produce q̄t, i.e., q̄t = F (n̄t). Further, let nu

t

and qut denote the amount of employment and its corresponding output,
respectively, under unbinding demand constraint: hence, PtF

′(nu
t ) = Wt and

F (nu
t ) = qut . If the demand is binding, the level of employment is dictated by

q̄t. Consequently, for given (Pt,Wt, kt−1, q̄t), the firm will choose an amount
of employment, nt, to maximize the current quasi-rent:

πq
t = Pt min(F (nt), q̄t)−Wtnt. (40)

The solution is given by n∗
t = min (nu

t , n̄t) , where n
u
t = ((1− α)Pt/Wt)

1/α kt−1,

and n̄t =
(
q̄t/k

α
t−1

)1/(1−α)
Accordingly, the corresponding short-run output is

given by q∗t = min(qut , q̄t), where qut = ((1− α)Pt/Wt)
(1−α)/α kt−1.

Appendix B Proof of Lemma 1

Proof. From the definition of ρ̂, the equivalence between (L1) and (L2) is
obvious. Multiplying the both sides of (25) by ρ̂+ δ, the second condition is
equivalent to[

Pt

(
(1− α)Ut

αWt

)1−α

− (1− α)Ut

α

]
= Pt−1(ρ̂+ δ) > Pt−1(rt + δ) = Ut, (41)

which is the condition (L3). The inequality of (41) can be expressed as

Pt

(
(1− α)Ut

αWt

)1−α

− Ut

α
> 0,

whose left hand side is further rewritten as(
(1− α)Ut

αWt

)1−α [
Pt −

(Ut

α

)α( Wt

1− α

)1−α
]
=

(
(1− α)Ut

αWt

)1−α

(Pt − a∗t ),

which implies the equivalence between (L2) and (L4).
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Appendix C Proof of Proposition 1

Proof. In this subsection, except for emphasis, we omit the subscript ss that
is associated with steady-state. Let c′ = cw/(1− cy) By (30a) and (30d),

Y

P
= c′K. (42)

By (42) and (30e),
Q = (c′ + δ)K, (43)

hence, η = K/Q = 1/(c′ + δ). Substituting (30a) into (43) yields

K = (c′ + δ)−
1

1−α N̄ , (44)

hence, ν = N̄/K = (c′ + δ)1/(1−α). Plugging (44) into (43), we have

Q = (c′ + δ)−
α

1−α N̄ . (45)

Substituting (44) into (42) yields

Y

P
= C = c′(c′ + δ)−

1
1−α N̄ . (46)

We see that K, Q, Y
P
, and C are uniquely determined and independent of H̄.

Using (30b) and (44), we see that

W

P
=

(1− α)(r + δ)

α
(c′ + δ)−

1
1−α . (47)

By the way, substiting (46) and (44) into (30c), we get

c′(c′ + δ)−
1

1−α = H̄ +
W

P
+ r(c′ + δ)−

1
1−α , (48)

which reduces to

(c′ + δ){1− H̄(c′ + δ)
α

1−α} =
r + δ

α
. (49)

Substituting (47) into (48) and arranging terms, we get

r

α
+

(1− α)δ

α
= c′ − (c′ + δ)

1
1−α H̄, (50)

which implies that r is decreasing in H̄. Obtain H̄ ′ = (c′ + δ − δ/α)(c′ +
δ)1/(1−α) as the value of H̄ that gives r = 0 in (50). If H̄ ′ > 0, by choosing
a H̄ ∈ [0, H̄ ′], r is uniquely detemined. Since M̄ is exogenously given, (30f)
gives Y , implying P is uniquely determined. This in turn gives W .
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Appendix D Proof of Lemma 5

Proof. In this subsection, we continue to omit the subscript, ss, that is as-
sociated with steady-state. We must compute the average direct cost. By
(22), the direct cost is expressed as

Wn+ Uk =
Wn

1− α
.

The production function reduces to

q = kαn1−α =

(
k

n

)α

n =

(
αW

(1− α)U

)α

n.

Therefore, we obtain

a∗ ≡ Wn+ Uk

q
=

Wn(
αW

(1−α)U

)α

(1− α)n

=

(
U

α

)α (
W

1− α

)1−α

. (51)

By (8) and Kt = Kt−1, in the steady-state, Z = δK. This implies that,
by (16) and Lt = Lt−1, Π = 0. Therefore, by (15) PQ = P (C + Z) =
PNfH̄ +WNf + UK = PN̄H̄ + a∗Q, which leads to

P{1− H̄(c′ + δ)α/(1−α)} = a∗ (52)

from (45).

Appendix E Proof of Proposition 2

Proof. It follows from (49) that

c′ + δ = H̄(c′ + δ)
1

1−α +
r + δ

α
. (53)

Solving (50) for r, we get

r = α{c′ − 1− α

α
δ − H̄(c′ + δ)

1
1−α}. (54)
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Diffrentiating (54) with respect to c′ and using equation (54), we see

∂r

∂c′
= α− α

1− α

H̄(c′ + δ)
1

1−α

c′ + δ

= α+
r − αc′ + (1− α)δ

(1− α)(c′ + δ)

= α+
r + δ − α(c′ + δ)

(1− α)(c′ + δ)

= α− α

1− α
+

r + δ

(1− α)(c′ + δ)

=
1

1− α

(
−α2 +

r + δ

c′ + δ

)
> 0 (55)

where the last inequality follows from (53), i.e., (r + δ)/(c′ + δ) > α. The
inequality (55) implies ∂Y/∂c′ > 0 by (30f). This in turn leads to ∂P/∂c′

since real income decreases with c′. Using (53) equation (47) can be rewritten
as

W

P
= (1− α)

r + δ

α

(
H̄ +

r + δ

α

)− 1
1−α

. (56)

Differentiating (47) with respect to c′ yields

∂(W/P )

∂c′
=

1− α

α

{(
H̄ +

r + δ

α

)− 1
1−α

− 1

1− α
(r + δ)

(
H̄ +

r + δ

α

)− 1
1−α

−1
}

=
1− α

α

(
H̄ +

r + δ

α

)− 1
1−α

−1 [
H̄ +

r + δ

α
− r + δ

1− α

]
=

1− α

α

(
H̄ +

r + δ

α

)− 1
1−α

−1 [
H̄ + (r + δ)

1− 2α

α(1− α)

]
,

which is positive if α < 1/2. Thus, Wss rises faster than Pss does. By (53), a
rise in H̄ lowers r, thus reducing Y by (30f). Since Y/P remains the same, Pss

must decline. Since W/P declines, Wss drops even more than Pss does.

Appendix F Proof of Lemma 6

Proof. Dividing the numerator and denominator of (13) by Kt−1, we have

P (νt) =
cyWssνt + Et

ν1−α
t −max{ηssν1−α

t − (1− δ), 0}
, (57)
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where Et = Pt−1{cy(H̄ + rtKt−1) + cwKt−1}

P ′(ν) =
cyWCR

C2
R

− CN{(1− α)(1− η)ν−α}
C2

R

=
1

CR

{cyW − p(1− α)(1− η)ν−α}

MC ′ =
Wανα−1

1− α

= MC
α

ν
.

P ′(ν)−MC ′ =
1

CRν
{cyWν − P (1− α)(1− η)ν1−α −MCαCR}

=
1

CRν
[cyWν − P (1− α)(1− η)ν1−α − Pα{(1− η)ν1−α + (1− δ)}]

=
1

CRν
[cyWν + P (1− α)(η − 1)ν1−α − αCN ]

=
1

CRν
[cyWν + P (1− α)(η − 1)ν1−α − α(cyWν + E/K)]

=
1

CRν
[(1− α)cyWν − αE/K + P (1− α)(η − 1)ν1−α] (58)

By the way,

(1− α)cyWν − αE/K = (1− α)(cyWν + E/K)− (1− α)E/K − αE/K

= (1− α)CN − E/K (59)

P (1− α)(η − 1)ν1−α = −(1− α)p{(1− η)ν1−α + (1− δ)}+ (1− α)(1− δ)p

= −(1− α)CN + P (1− α)(1− δ) (60)

Substituting (59) and (60) into (58) yields

P ′(ν)−MC ′(ν) =
1

PCRν

(
(1− α)(1− δ)− E

PK

)
. (61)

Since the economy has stayed in a SSE until period t− 1, we see

Et

Pt−1Kt−1

=
Ess

PssKss

=
Yss

PssKss

− cy
Wss

Pss

Nf

Kss

, (62)
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which is, by (46) and (47), reduced to

Et

Pt−1Kt−1

=
Nf

K
(c′ + δ)−

1
1−α

(
c′ − cy

(1− α)(r + δ)

α

)
= c′ − cy

(1− α)(r + δ)

α
,

where the last equality follows from (44). By (46) and (47),

E

PK
=

C

K
− cy

W

P

N

K

= c′ − cy
(1− α)(r + δ)

α
. (63)

Let δ′ = δ + cy/(1− cy)H̄(c′ + δ)1/(1−α). Using (53), we can express (63) as

E

PK
= c′ − cy(1− α){c′ + δ − H̄(c′ + δ)

1
1−α}

= c′ − cy(1− α)c′ + δ + cy(1− α)H̄(c′ + δ)
1

1−α

= c′ − (1− α)(c′ + δ) + (1− α){(1− cy)(c
′ + δ) + cyH̄(c′ + δ)

1
1−α}

= c′ − (1− α)(c′ + δ) + (1− α)(1− cy)(c
′ + δ′)

Therefore,

(1− α)(1− δ)− E

PK
= (1− α)(1− δ)− {αc′ − (1− α)δ} − (1− α)(1− cy)(c

′ + δ′)

= 1− α− αc′ − (1− α)(1− cy)(c
′ + δ′)

= (1− α)(1− cy)
( 1− α− αc′

(1− α)(1− cy)
− c′ − δ′

)
.

Hence, P ′(ν̄) > MC ′(ν̄) if and only if

δ′ <
1− α− αc′ − c′(1− α)(1− cy)

(1− α)(1− cy)

42



Substituting H̄(c′ + δ)
1

1−α = c′ + δ − r+δ
α

into the above expression, the
inequality is reduced to

cy

{
(c′ + δ)− r + δ

α

}
< 1− δ − c′

1− α
+ cy(c

′ + δ)

1 + cy
r + δ

α
> δ +

c′

1− α

1 + cy
r + δ

α
+

α

1− α
δ >

c′ + δ

1− α

(1− α+
1− α

α
rcy) + (

1− α

α
cy + α)δ > c′ + δ.

Therefore, a sufficient condition for the right hand side of (61) to be positive
is that

1− α

α
cy + α > 1

and
1− α > c′.

The former inquality holds if cy > α since the weighted sum of cy and α, i.e.,
(1− α)cy + αα > α, is always greater than α.

Appendix G Proof of Lemma 7

Proof. In what follows, ν is used to represent ν̄. First, it is verifed that,
for ν less than νδ, the output price decreases as ν increases if the price
is greater than the marginal cost. For ν < νδ, ζ = 0, hence, by (57),
P (ν) = (cyWssν + Ess)/ν

1−α where Ess denote the nominal consumption
out of non-wage income per unit of capital goods in the steady state, i.e.,
Ess = Pss{cy(H̄ + rssKss) + cwKss} = PssCss/Kss − cyWssνss.

dP

dν
=

cyWssν
1−α − (cyWssν + Ess)(1− α)ν−α

ν2(1−α)

=
Wss

ν1−α
{cy − P/MC(Wss, ν)},

which is negative if P > MC(Wss, ν).
Next, let’s obtain the level of H̄ that equates P (νδ) to a∗. Since Ess

includes the compensation to overhead employees P (νt) is increasing in H̄
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for all νt. Notice that ν1−α
δ = (1 − δ)/ηss. Moreover, ηss = {αWss/((1 −

α)Uss)}1−α = (α/Uss)(1/A)(Uss/α)
α(Wss/(1 − α))1−α = αa∗ss/Uss. Further,

we see that

cyWssνδ + Ess = cyWssνss + Ess − cyWss(νss − νδ)

= Pssc
′ − cyWss{(c′ + δ)1/(1−α) − νδ}

Therefore, by (31) and (56), the condition P (νδ) = a∗ can be expressed as
follows:

P (νδ) =
cyWssνδ + Ess

ν1−α
δ

= a∗ss (64)

Pss[c
′ − cy

1−α
α

(rss + δ){1− (1− δ)1/(1−α)}]
(1− δ)(c′ + δ)

=
ηssUss

α
(65)

1

1− δ
[c′ − cy

1− α

α
(rss + δ)){1− (1− δ)1/(1−α)}] = rss + δ

α
. (66)

Using (49), we get

{c′ + δ − H̄δ(c
′ + δ)1/(1−α)}

(
1 +

cy(1− α){1− (1− δ)1/(1−α)}
1− δ

)
=

c′

1− δ
,

(67)
implying that

H̄δ =
c′ + δ − c′/{∆(1− δ)}

(c′ + δ)1/(1−α)
,

where ∆ = 1+cy(1−α){1− (1−δ)1/(1−α)}/(1−δ). For a given ν, the output
price is increasing in H̄. Hence, P (ν) > a∗ss.

By (13), the following equality holds:

F = cyWssν
′ + Ess − a∗ss

(
(1− ηss)ν

′1−α + 1− δ
)
= 0,

∂F

∂ν ′ = cyWss − ass(1− ηss)(1− α)ν ′1−α > 0.

The result follows because Ess depends on H̄ positively.
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Appendix H Explanation of Remark 5

The total productive capital stocks of mutants and an incumbent in pe-
riod(t+1) are respectively given by ϵ{ζ̂ + (1 − δ)}Kt−1, and (1 − ϵ){ζ̄t +
(1 − δ)}Kt−1. Choosing νc,t, the firms expect to determine the amounts of
employment to be combined with these capital stocks. Since the aggregate
demand is equal to aggregate output, the overall demand in period t + 1
will be ν1−α

c,t [ϵ{ζ̂ + (1 − δ)} + (1 − ϵ){ζ̄t + (1 − δ)}]Kt−1 By Assumption 1,
the aggregate demand is distributed among the firms in proportion to their
capital stock in period t − 138 Therefore, the mutants as a whole expect to
receive the following demand: ϵν1−α

c,t [ϵ{ζ̂+(1−δ)}+(1−ϵ){ζ̄t+(1−δ)}]Kt−1,

which is larger than their collective output ϵν1−α
c,t

(
ζ̂ + (1− δ)

)
if ζ̂ < ζ̄t.

Appendix I Proof of Lemma 9

Proof. Assume that ν̄t ≤ νc,t.
Step 1
We first claim that the strategy pair of mutants that can upset a Keyne-

sian temporary equilibrium most effectively, i.e., with its smallest population
size ϵ̂, is (ν̂, ζ̂) = (ν̄t, 0). We verify this claim for two cases depending on the
value of ν̂: (i) ν̂ > ν̄t and (ii) ν̂ ≤ ν̄t.
Case (i) ν̂ > ν̄t

This employment strategy cannot be optimal. By Remark 3 the mutants
are producing output beyond their demand constraint, i.e., ν̂1−α > λ̃, so
that, regardless of the value of ζ̂, they can cut wage bill without reducing
revenue.
Case (ii) ν̂ ≤ ν̄t

We want to show that if ν̂ < ν̄t, then the investment ratio of a successful
mutant must be ζ̂ = 0. To show this formally, assume, on the contrary, that

38To estimate period t + 1 demand, we use period t − 1 capital in stead of period t
capital. This assumption attempts to capture some inertia involved in individual demand,
for example, long-term customer relationships. One may think that there is some time
inconsistency: individual demand in both periods t and t + 1 depend on kt−1. We could
have alternatively assumed that the aggregate demand in period t is distributed among
individual firms based on kt−2. Since in period t − 1 all the firms behaved identically,
hence ζt−1(θ) = ζt ∀θ in particular. Therefore, kt−2(θ)/Kt−2 = kt−1(θ)/Kt−1. Hence
the alternative assumption and the current one are equivalent with each other, hence the
current assumption is innocuous.
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a successful mutant, best responding to E(ϵ, (ν̂, ζ̂)), has a strategy pair (ν̂, ζ̂)
such that ν̂ < ν̄t as well as ζ̂ > 0. For a positive ζ̂ to be a best response, the
output price, p̃, must bring the value of quasi-rents large enough to ensure

PK(P̃ ,Wt, Ut, rt) =
∞∑
s=1

(1− δ)s−1

(1 + rt)s

[
P̃
((1− α)Ut

αWt

)1−α

−
(1− α

α
Ut

)]
≥ Pt−1.

By Corollary 2, this inequality implies that the price must exceed the mini-
mum average cost, a∗t , that coincides with the marginal cost at ν = νc,t, i.e.,
P̃ > MC(Wt, νc,t) = Wtν

α
c,t/(1 − α). Since ν̂ < ν̄t < νc,t and MC(Wt, ν)

is increasing in ν, we see p̃ > MC(Wt, ν̂) = Wtν̂
α/(1 − α). In addition, by

remark 4, the inequality ν̂ < ν̄t implies that the demand constraint is not
binding, i.e., ν̂1−α < λ̃. Therefore, remark 1 implies that the mutants have
an incentive to increase employment from ν̂kt−1, contradicting the assump-
tion that (ν̂, ζ̂) best responds to E(ϵ, (ν̂, ζ̂)). Hence, it must be the case that
PK(p̃,Wt, Ut, rt) < Pt−1, thereby ζ̂ = 0. Thus, given ν̂ < ν̄t, we can narrow
down the range of best responding mutants to those with ζ̂ = 0.

Suppose the strategy pair of mutants is (ν̂, 0). Setting ζ̂ = 0 in (38), the
output price after the entry of zero-investment mutants, which is denoted by
P̃0(ϵ, ν̂), is expressed as:

P̃0(ϵ, ν̂) =
CN − ϵ(ν̄ − ν̂)cyWt

(1− ϵ)CR + ϵν̂1−α
. (68)

Differentiating (68) with respect to ϵ yields

∂P̃0(ϵ, ν̂)

∂ϵ
=

−(ν̄ − ν̂)cyWt{(1− ϵ)CR + ϵν̂1−α} − {CN − ϵ(ν̄ − ν̂)cyWt)}(−CR + ν̂1−α)

{(1− ϵ)CR + ϵν̂1−α}2

=
CR{−(ν̄ − ν̂)cyWt + CN} − ν̂1−α(ν̄ − ν̂)cyWtϵ− ν̂1−α(CN − ϵ(ν̄ − ν̂)cyWt)

{(1− ϵ)CR + ϵν̂1−α}2
(69)

=
CR{CN − cyWtν̄ + cyWtν̂} − ν̂1−αCN

{(1− ϵ)CR + ϵν̂1−α}2

=
CR(Et/Kt−1 + cyWtν̂)− CN ν̂

1−α(
(1− ϵ)CR + ϵν̂1−α

)2 , (70)

where Et = Pt−1{cy(H̄ + rtKt−1) + cwKt−1}.
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Let ν be the value of ν̂ that satisfies ∂P̃0(ϵ, ν̂)/∂ϵ = 039: hence, P̃0(ϵ, ν̂)ν
1−α =

cyWtν+Et/Kt−1. Thus, P̃0(ϵ, ν̂) is increasing in ϵ for ν̂ ∈ (0, ν) and decreas-
ing in ϵ for ν̂ ∈ (ν, ν̄t) We also note that for any ϵ, P̃0(ϵ, ν) = Pt. (See, Figure
4)

Using this threshold value ν, Case (ii) is subdivided into two cases.
Case (ii-1) ν̂ ∈ (ν, ν̄t] and ζ̂ = 0

We want to show below that the entry barrier becomes smallest when
mutant employment strategy ν̂ = ν̄, namely, any mutant with ν̂ in this in-
terval is not as effective as those with (ν̄t, 0) to upset the KTE. In other
words, we can lower the threshold value ϵ̂ by increasing ν̂. To get intu-
ition, compare two diffrent values of ν̂ in Figure 4-(a). We show below that,
for a given ϵ̂, as far as the post-entry price, P̃0(ϵ, ν̂), exceeds marginal cost
MC(Wt, ν̂), the mutants with employment strategy ν̂ can increase profit by
increasing employment without violating demand constraint. As a result,
if ν̂0 mutants enter with population ϵ0, post-entry output price is greater
than the marginal cost, so that they cannnot survive. The population size,
ϵ, that ensures ν̂-mutant’s survival is given by the intersection of P̃0(ϵ, ν̂)
and MC(Wt, ν̂). By Corollary 2, PK(a∗t ,Wt, Ut, rt) = Pt−1. Further, since
at(ν) achieves its minimum a∗t at ν = νc,t, by remark 2, a∗t > MC(Wt, ν̂) for
ν̂ < νc,t. If the output price falls below a∗t , firms would stop new investment
even if sufficient demand is expected. When the output price falls further
down to P̃0(ϵ, ν̂) = MC(Wt, ν̂), ν̂ becomes the profit maximizing level of
employment ratio. Differentiating (68) with respect to ν̂ yields

∂P̃0(ϵ, ν̂)

∂ν̂
=

ϵcyWt{(1− ϵ)CR + ϵν̂1−α} − (CN − ϵ(ν̄ − ν̂)cyWt)ϵ(1− α)ν̂−α

{(1− ϵ)CR + ϵν̂1−α}2

=
ϵcyWt − P̃0(ϵ, ν̂)ϵ(1− α)ν̂−α

(1− ϵ)CR + ϵν̂1−α}

=
ϵ(1− α)ν̂−α

(
cyMC(Wt, ν̂)− P̃0(ϵ, ν̂)

)
CR − ϵ

(
CR − ν̂1−α

) , (71)

39We see that the numerator of (70) is strictly decreasing in ν̂. The partial derivative of
the numerator of (70) with respect to ν̂ can be expressed as CR(cyWt−CN (1−α)ν̂1−α) =
CR(1 − α)ν̂−α

(
cyMC(Wt, ν̂) − CN/CR

)
= CR(1 − α)ν̂−α

(
cyMC(Wt, ν̂) − Pt

)
< 0 since

Pt > MC in KTE. Moreover, the value of the numerator is CREt/Kt−1 > 0 for ν̂ = 0
and by inspecting the numerator of (69) CN (CR − ν̂1−α) = −CN ζ̄t < 0 for ν̂ = ν̄t.
Consequently, there is a unique threshold value, ν, strictly between 0 and νt such that
∂P̃0/∂ϵ = 0.
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which is negative as far as P̃0(ϵ, ν̂) > MC(Wt, ν̂) = Wtν̂
α/(1− α). We know

that a group of mutants of population ϵ will upset the KTE if the strategy
of mutants, (ν̂, 0), are best responding to E(ϵ, ν̂, 0). This is true if P̃0(ϵ, ν̂)
coincides with a∗t since, as noted above, for ν̂ < νc,t, a

∗
t is always greater than

MC(Wt, ν̂). Define the difference between these prices by F (ϵ, ν̂). Hence,
this critical level of population size, ϵ̂, is given by

F (ϵ̂, ν̂) = P̃0(ϵ̂, ν̂)− a∗t = 0. (72)

Since P̃0(ϵ̂, ν̂) = a∗t in E(ϵ̂, (ν̂, 0)), ζ̂ = 0 is a best response. Thus, for given
ν̂, ϵ̂) is a candidate of the smallest ϵ. As noted above, for P̃0(ϵ, ν̂) > P̃n(ν̂),
we have

dϵ̂

dν̂
= −∂P̃0(ϵ, ν̂)/∂ν̂

∂P̃0(ϵ, ν̂)/∂ϵ
< 0.

Thus, we can make the threshold value of ϵ smaller by increasing ν̂ so far
as ν̂ < ν̄t. Therefore, the smallest population size of successful mutants is
achieved when ν̂ = ν̄t in the interval ν̂ ∈ (ν, ν̄t]. Let ϵ̄ ≡ ϵ̂(ν̄t), the mutants are
best responding not only with respect to investment but also to employment
since the mutants are selecting the level of output just equal to the demand
constraint, ν̄1−α = λt, although the output price exceeds the marginal cost,
i.e., P̃0(ϵ̂, ν̄t) = a∗t > Wtν̄

α
t /(1− α).

Case (ii-2) ν̂ < ν and ζ̂ = 0

By assumption ν̂ < ν < ν̄t, so that P̃0 is increasing in ϵ by (70) (Figure
4-(b)). Thus, ∀ϵ,

P̃0(ϵ, ν̂) > Pt (73)

By the definition of KTE, we know that

Pt > MC(Wt, ν̄t) = MC(Wt, ν̄t) (74)

Since MC(Wt, ν̂) is increasing in ν̂, (73) together with (74) imply that

P̃0(ϵ, ν̂, > Pt > MC(Wt, ν̄t) > MC(Wt, ν̂t). (75)

This says the post-entry output price exceeds post-entry marginal cost. Fur-
ther, by Remark 4, ν̂1−α < λ̃(ϵ, ν̂). This means the demand constraint is not
binding.

Similarly, by the property of KTE, we see Pt > a∗t . Thus, by (75), we
also have

P̃0(ϵ, ν̂) > a∗t . (76)
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Consequently, ∀ϵ ∈ (0, 1) and ∀ν̂ < ν the mutants are not best responding
to post-entry environment E(ϵ, ν̂, 0) in investment as well as employment
decisions.

From Case (ii-1) and Case (ii-2), we have shown that mutants with a
strategy pair, (ν̂, ζ̂) = (ν̄t, 0), can upset a KSE with the smallest population
ϵ̂. In other words, The strategy, (ν̄t, 0) best responds to E(ϵ̂, (ν̄t, 0)).
Step 2

Substituting ν̂ = ν̄ and ζ̂ = 0 into (38), we have

P̃ (ϵ, ν̄, 0) =
cy(Pt−1H̄/Kt−1 +Wtν̄ + rtPt−1) + cwPt−1

ν̄1−α − (1− ϵ){ηtν̄1−α − (1− δ)}
. (77)

Further, setting P̃ (ϵ, ν̄, 0) = a∗t by (72), invasion barrier ϵ̂ must satisfy that

cy(Pt−1H̄/Kt−1 +Wtν̄ + rtPt−1) + cwPt−1

= a∗t

(
ν̄1−α − (1− ϵ̂){ηtν̄1−α − (1− δ)}

)
(78)

= a∗t

(
{1− (1− ϵ̂ηt)}ν̄1−α + (1− ϵ̂)(1− δ)

)
(79)

Since the level of incumbents’ investment is positive, the right hand side of
the first equation is increasing in ϵ̂. The left hand side increases as H̄ rises.
Thus, the larger the value of H̄, the greater the invasion barrier becomes.

By the implicit function theorem, ϵ̂ is expressed as a continuous function
of ν̄. If ϵ̂ is non-decreasing in some ν̄ < νct, say ν̄ ′, then it must be the case
that ηt ≤ 1/(1 − ϵ̂(ν̄ ′)), which implies that ϵ̂(ν̄ ′) > ϵ̄. If 1 > (1 − ϵ̄)ηt, (79)
implies that ϵ̂ is increasing at νct, which implies that there must be some ν̄ ′′

such that ϵ̂(ν̄ ′′) = ϵ̄ and dϵ̂(ν̄ ′′)/dν̄ < 0, a contradiction.

Appendix J Proof of Lemma 10

Proof. Step 1
First, following the same line of argument as in the proof of lemma 9,

we see ν̂ > ν̄t cannot constitute a best response. Hence, we consider only
mutants with ν̂ ≤ ν̄t. There are two types of investment strategies: zero
and non-zero investment strategies. We claim that, either type of mutants
cannot thrive if their employment ratio ν̂ is greater than νc,t. We take up
the zero investment case first.
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Case (i)-1: ν̂ ∈ (νc,t, ν̄t), and ζ̂ = 0

Assume that mutants with zero investment strategy successfully enter the
economy: thus, by (27), either one of the following two inequalities,( αWt

(1− α)Ut

)1−α

q̄t+1 < (1− δ)kt−1, or P̃ < a∗t ,

or both of them must hold. Since νc,t = (1 − α)Ut/(αWt) and q̄t+1/kt−1 =
(n̄t/kt−1)

1−α = ν̄1−α
t , the first inequality is simplified as (ν̄t/νc,t)

1−α < 1− δ,
implying that ν̄t/νc,t < (1− δ)1/(1−α) < 1, which contradicts the assumption
that νc,t < ν̄t. Therefore, we must have P̃ < a∗t . Note also that, as shown
in Figure 2, for ν̂ ∈ (νc,t, ν̄t), P̃ < a∗t < MC(Wt, ν̂), which implies that the
mutants will be better off by reducing employment below ν̂.
Case (i)-2: ν̂ ∈ (νc,t, ν̄t), and ζ̂ > 0

Suppose that, for νc,t < ν̂ < ν̄t, a non-zero investment mutant strategy

(ν̂, ζ̂) best responds to the post-entry envoronment. Note first that for ν̂ ∈
(νc,t, ν̄t), MC(Wt, ν̂) > a∗t . (Figure 2) By Remark 4, the mutants produce
less than their demand constraints, i.e., ν̂1−α < λ̃(ϵ, ν̂). This implies that the
mutants can increase the profits by increasing employment if the post-entry
price exceeds the marginal cost, i.e., P̃t > MC(Wt, ν̂). Therefore, it must be
the case that

P̃ (ϵ, ν̂, ζ̂) = MCt(Wt, ν̂) > a∗t , (80)

thus new investments must be profitable. Differentiating (38) with respect
to ν̂ yields

∂P̃ (ϵ, ν̂, ζ̂)

∂ν̂
= ϵ

cyWt − P̃ (1− α)ν̂−α

(1− ϵ)CR + ϵ
{
ν̂1−α −max(ζ̂ , 0)

} . (81)

Observe this derivative is negative if P̃ ≥ Wtν̂
α/(1− α) = MCt(Wt, ν̂). We

want to show that the best responding mutants have ζ̂ < ζ̄t. To show this,
assume on the contrary so that ζ̂ ≥ ζ̄t. First, note that Pt = P̃ (ϵ, ν̄t, ζ̄t)
because, if the mutants play the same strategy as the incumbents, then the
entry of mutants would not change output price. Next, the initial situation
(ν̄, ζ̄t) is in a Keynesian temporary equilibrium, hence, Pt > MC(Wt, ν̄t).
Further, by the inspection of (38), P̃ (ϵ, ν̂, ζ̂) is increasing in ζ̂, thus ∀ϵ,
P̃ (ϵ, ν̄t, ζ̂) ≥ P̃ (ϵ, ν̄t, ζ̄t) = Pt > MC(Wt, ν̄t). We know from (81) and (80)
that, ∃δ > 0, such that P̃ (ϵ, ν̂ + δ, ζ̂) < MC(Wt, ν̂ + δ). Then, by the
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mean value theorem, there exists at least one point ν̂ ′ ∈ (ν̂, ν̄t) such that
P̃ (ϵ, ν̂ ′, ζ̂) = MC(Wt, ν̂

′) and ∂P̃ (ϵ, ν̂ ′, ζ̂)/∂ν̂ > MC ′(Wt, ν̂
′) > 0, contradict-

ing the above observation.
Thus, we have shown that the best responding mutants must have invest-

ment ratio ζ̂ < ζ̄t. Then, by Remark 5, the mutants can increase the expected
profits by increasing ζ̂. Consequently, a mutant with ν̂ > νc,t cannot survive.
Case (ii)-1: ν̂ ∈ (ν, νc,t)

Since a∗t > MC(Wt, ν̂) for ν̂ in this range (Figure 2), if P̃ > a∗t , P̃ >
MC(Wt, ν̂). Then, Remark 4 suggests that the mutants should increase
employment. Therefore, we only need to consider zero investment mutants.
Then, the rest of the proof is similar to that of Lemma 9. If P̃0(ϵ, ν̂) in
equation (68) falls below a∗t , zero investment becomes a best response. If
ν̂ < νc,t we can lower ϵ(ν̂) defined by equation (72) by increasing ν̂. As a

result, the successful mutants have strategy (ν̂, ζ̂) = (νc,t, 0). Therefore, the
smallest population size of successful mutants is achieved when ν̂ = νc,t in the
interval ν̂ ∈ (ν, νc,t). Note that a

∗
t = MC(Wt, νc,t) so that this no-investment

strategy of the mutants is also optimal employment decision.
Case (ii)-2: ν̂ ∈ (0, ν)

The proof is the same as in Lemma 9, hence omitted.

Step 2

Substituting ν̂ = νc,t and ζ̂ = 0 into (38), we have

P̃ (ϵ, νc,t, 0) =
−ϵ(ν̄ − ν̂)cyWt + cy(Pt−1H̄/Kt−1 +Wtν̄ + rtPt−1) + cwPt−1

(1− ϵ){ν̄1−α − ηt(ν̄1−α − (1− δ)}+ ϵν1−α
c,t

.

(82)
Further, setting P̃ (ϵ̂, νc,t, 0) = a∗t by (72), invasion barrier ϵ̂ must satisfy that

− ϵ(ν̄ − νc,t)cyWt + cy(Pt−1H̄/Kt−1 +Wtν̄ + rtPt−1) + cwPt−1 (83)

= a∗t

[(
ν̄1−α − {ηtν̄1−α − (1− δ)}

)
+ ϵ̂

{
ν1−α
c,t −

(
ν̄1−α
t − {ηtν̄1−α − (1− δ)}

)}]
(84)

= a∗t
[
(1− ϵ̂){ν̄1−α −

(
ηtν̄

1−α − (1− δ)
)
}+ ϵ̂νc,t

]
(85)

As ν̄ increases, (83) increases while (85) decreases. Let Γ(ν̄) = ν1−α
c,t −[

ν̄1−α
t −{ηtν̄1−α − (1− δ)}

]
in (84). Since ηtν

1−α
c,t = 1, Γ(νc,t) = δ. Moreover,

Γ′(ν̄) > 0. Hence, Γ(·) > 0. Therefore, (84) is increasing in ϵ̂. Further, (83)
decreases as ϵ̂ rises. As a consequence, ϵ̂ is increasing in ν̄. It follows that ϵ̂
is increasing in H̄ because (83) is increasing in H̄.
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Appendix K Proof of Proposition 4

Proof. First, let us obtain invasion barrier for ν̄ = νss. It follows from (44)
and (46) that the left hand side of (78), denoted by CN , is expressed as
CN = Pssc

′, where c′ = cw/(1 − cy). Also, by (43) and (44), we get ηss =
Kss/Qss = 1/(c′ + δ) and ν1−α

ss = c′ + δ respectively. Therefore, arranging
terms in (78), we get

ϵ̂ = 1− assν
1−α
ss − Pssc

′

δass

= 1− c′ + δ

δ
+

Pss

ass

c′

δ

=
c′

δ

(
Pss

ass
− 1

)
=

c′

δ
(c′ + δ)

1
1−α H̄, (86)

where the last equality follows from (52). Since ηss = 1/(c′+δ), the condition,
1 > (1− ϵ̄)ηt, in lemma 9 is expressed as

ϵ̂ < 1− c′ − δ. (87)

Combining (86) with (87), we see that, if H̄{cw/(1 − cy)}1/(1−α) < δ{(1 −
δ)(1 − cy)/cw − 1} at ν̄ = νss, ϵ̂ is decreasing function of ν̄. Hence, the
condition of lemma 9 holds for all ν̄ ≤ νss, as desired.

Appendix L Appendix for Referee

Derivation of MCt in (20)

From (19), we get

MCt =
W

1− α

( nt

kt−1

)α

=
W

(1− α)
(kα−1

t−1 n
1−α)

α
1−α

=
W

(1− α)

( q̄t
kt−1

) α
1−α

=
W

(1− α)
λ

α
1−α

t .
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Derivation of Equation (38)

P̃ (ϵ, ν̂, ζ̂) =
cy
(
Pt−1H̄Nf +WtÑt(ϵ, ν̂) + rtPt−1Kt−1

)
+ cw(Pt−1Kt−1)

Q̃t(ϵ, ν̂)− Z̃t(ϵ, ζ̂)
(37′)

=
cy{Pt−1H̄Nf +Wt

(
(1− ϵ)Nt + ϵN̂

)
+ rtPt−1Kt−1}+ cw(Pt−1Kt−1)

(1− ϵ)Q̄t + ϵKαN̂1−α − (1− ϵ)(ηtQ̄t − (1− δ)K)− ϵmax(Ẑ, 0)

=
cy{Pt−1H̄Nf +WtNt + rtPt−1Kt−1}+ cw(Pt−1Kt−1)− cyWtϵ(Nt − N̂)

(1− ϵ)
(
Q̄t − ηtQ̄t + (1− δ)K

)
+ ϵ

(
KαN̂1−α −max(Ẑ, 0)

)
=

CN − ϵ(ν̄ − ν̂)cyW

(1− ϵ)CR + ϵ
{
ν̂1−α −max(ζ̂ , 0)

} . (38′)

Derivation of Equation (49)

c′(c′ + δ)−1/(1−α) = H̄ +
(1− α)(r + δ)

α
(c′ + δ)−1/(1−α) + r(c′ + δ)−1/(1−α)

c′ = H̄(c′ + δ)1/(1−α) +
(1− α)(r + δ)

α
+ r

c′ + δ − H̄(c′ + δ)−1/(1−α) =
r + δ

α

(c′ + δ){1− H̄(c′ + δ)α/(1−α)} =
r + δ

α
(49′)

Derivation of (81)

Let Ψ = (1− ϵ)CR + ϵ
{
ν̂1−α −max(ζ̂ , 0)

}
. Differentiating (38) with respect

to ν̂, we obtain

∂P̃ (ϵ, ν̂, ζ̂)

∂ν̂
=

ϵcyWΨ−
(
CN − ϵ(ν̄ − ν̂)cyW )ϵ(1− α)ν̂−α

Ψ2

=
ϵcyWΨ− P̃Ψϵ(1− α)ν̂−α

Ψ2

= ϵ
cyWt − P̃ (1− α)ν̂−α

(1− ϵ)CR + ϵ
{
ν̂1−α −max(ζ̂ , 0)

} . (81′)
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