NISHIHARA Shoko(Professor)

NISHIHARA SHOKO

Specialized field Functional biochemistry
Cell biology
Developmental biology
General medical chemistry
Classes Bioinformatics Seminar 3
Bioinformatics Seminar 4
General Topics in Science and Engineering
Advanced Topics in Science and Engineering
Chemistry Laboratory
Molecular Cell Biology 2
Genome Informatics
Current Topics in Biofunctional Engineering
Advanced Study of Biofunctional Engineering
Glycobiology
Advanced Course of Bioengineering
Advanced Laboratory Course of Bioengineering
Laboratory in Bioinformatics 1
Laboratory in Bioinformatics 2
Research theme 1. Functional analysis of glycans
2. Genome-wide analysis of glycan functions using Drosophila RNAi system
3. Functional analysis of sulfation by regulation of PAPS transporters

Application for coverage

Detail of researcher information

Laboratory website

Bioinformatics of Graduate school of engineering

  • Academic Experience EDUCATION
    The University of Tokyo BS 1977 Sciences
    The University of Tokyo MS 1979 Sciences
    The University of Tokyo Ph.D. 1982 Sciences

    PROFESSIONAL EXPERIENCE
    1982-1983: Postdoctoral Research Fellow, Pharmaceutical Institute, School of Medicine, Keio University (Prof. Seiichi Inayama).
    1983-1987: Research Associate, Department of Microbiology, The Jikei University School of Medicine (Prof. Shogo Masuda).
    1988-1989: Postdoctoral Research Fellow, Department of Biochemistry, University of North Carolina, Chapel Hill (Prof. Laura Kalfayan).
    1989-1991: Postdoctoral Research Fellow, Department of Molecular Biology, Mitsubishi Kasei Institute of Life Sciences (Chief, Dr. Tadashi Miyake).
    1991-1997: Assistant Professor, Institute of Life Science, Soka University
    1997-2001: Associate Professor, Institute of Life Science, Soka University
    2001-present: Professor, Institute of Life Science, Soka University
    2003-present: Professor, Department of Bioinformatics, Faculty of Engineering, Soka University
    2003-present: Professor, Department of Bioinformatics, Graduate School of Engineering, Soka University
    2015-present: Professor, Department of Science and Engineering for Sustainable Innovation, Faculty of Science and Engineering, Soka University
    Disciplinary Glycobiology, Stem cell biology, Cell biology, Biochemistry, Molecular biology, Developmental biology
    Research Theme Glycosylation of proteins and lipids is performed in the Golgi apparatus by glycosyltransferases. Then the glycosylated proteins and lipids are transported to their final destinations. This process requires the Golgi residents, glycosyltransferases and sorting proteins. Elucidation of the biological role of glycan is one of the most important subjects to be resolved following the genome project. To analyze the basic physiological functions of glycans, we study the following subject.

    (1) Analyses of glycan functions by using Drosophila mutants and RNAi system of the genes related to the glycan synthesis and metabolism.

    RNAi is one of powerful reverse genetics tools to study gene function in many model organisms, including plants, C.elegans and Drosophila melanogaster, and also in mammals.
    Our molecular evolutionary study showed that a prototype of each human glycosyltransferase was conserved in Drosophila, suggesting common roles of glycans in humans and Drosophila. Therefore, we analyze the basic physiological functions of glycans using the Drosophila mutant and RNAi model system. The results will provide insight into the mechanisms of various human diseases.

    (2) Analyses of glycan functions in ES cells and iPS cells.

    ES cells and iPS cells are promising tools for biotechnology and possess key features that should allow their exploitation in the development of cell replacement therapies. A better understanding of the molecular mechanisms, that control the self-renewal and pluripotency and also the differentiation of ES cells, is required. Several signaling cascades, as well as the expression of intrinsic factors such as Oct3/4 and Nanog, maintain the self-renewal and pluripotency of ES cells. These signaling cascades are activated by extrinsic factors such as LIF, BMP and Wnt. Wnt, FGF, Hh and BMP signalings are also playing key roles in the determination of cell fates during differentiation of ES cells.
    Glycan structures on cell surface show marked change during development and regulate various signals via extrinsic factors. In this project, we perform knockdown or overexpression of glycosyltransferases and sugar-nucleotide transporters to analyze the roles of glycans in ES cells and iPS cells, especially focusing on the effect to the signals from extrinsic factors.

    (3) Analyses of biological function of sulfation in development.

    Sulfation is one of the most important post-translational modifications of proteins and glycans as it generates sulfated molecules that are involved in a variety of biological processes. Sulfation is carried out in the lumen of the Golgi apparatus by a range of sulfotransferases. An activated form of sulfate, PAPS, is a common sulfate donor. Sulfotransferases transfer sulfate from PAPS to a defined position on a target sugar residue or Tyr residue. In higher organisms, PAPS is synthesized in the cytosol by a PAPS synthetase. PAPS transporters (PAPSTs), which are localized in the Golgi membrane, transport PAPS from the cytosol into the lumen of the Golgi apparatus. Therefore, expression of PAPSTs determines the sulfation status of molecules on the cell surface and of secreted molecules. Previously we have cloned two PAPSTs, named PAPST1 and PAPST2, and identified their activities. Now we analyze the biological function of sulfation by using PAPST knockout mice.
    Publications Original article
    *Corresponding author

    1. Kinoshita, T., Sato, C., Fuwa, T.J., Nishihara, S.*: Short stop mediates axonal compartmentalization of mucin-type core 1 glycans.
    Sci Rep., 7, 41455 (2017).
    2. Miura, T., Nishihara, S.*: O-GlcNAc is required for the survival of primed pluripotent stem cells and their reversion to the naïve state.
    BBRC, 480, 655-661 (2016).
    3. Itoh, K., Akimoto, Y., Fuwa, T.J., Sato, C., Komatsu, A., Nishihara, S.*: Mucin-type core 1 glycans regulate the localization of neuromuscular junctions and establishment of muscle cell architecture in Drosophila.
    Dev Biol., 412, 114-127 (2016).
    4. Miura, T., Hamaguchi, S., Nishihara, S.*: Atmospheric-pressure plasma-irradiation inhibits mouse embryonic stem cell differentiation to mesoderm and endoderm but promotes ectoderm differentiation.
    J. Phys. D: Appl. Phys., 49, 165401-1 - 165401-12 (2016).
    5. Takeuchi, T., Nishiyama, K., Saito, S., Tamura, M., Fuwa, T.J., Nishihara, S., Takahashi, H., Natsugari, H,. Arata, Y., Kasai, K.: Preparation of a polyclonal antibody that recognizes a unique galactoseβ1-4fucose disaccharide epitope.
    Carbohydr Res. 412, 50-55 (2015).
    6. Ichimiya, T., Maeda, M., Sakamura, S., Kanazawa, M., Nishihara, S.*, Kimura, Y.: Identification of α1,3-galactosyltransferases responsible for biosynthesis of insect complex-type N-glycans containing a T-antigen unit in the honeybee.
    Glycoconjugate J., 32, 141-151 (2015).
    7. Yamamoto-Hino, M., Yoshida, H., Ichimiya, T., Sakamura, S., Maeda, M., Kimura, Y., Sasaki, N., Aoki-Kinoshita, K.F., Kinoshita-Toyoda, A., Toyoda, H., Ueda, R., Nishihara, S.*, Goto, S.: Phenotype-based clustering of glycosylation-related genes by RNAimediated gene silencing.
    Genes to Cells, 20, 521-542 (2015).
    8. Fuwa, T.J., Kinoshita, T., Nishida, H., Nishihara, S.*: Reduction of T antigen causes loss of hematopoietic progenitors in Drosophila through the inhibition of filopodial extensions from the hematopoietic niche.
    Dev Biol., 401, 206-219 (2015).
    9. Hiono, T., Okamatsu, M., Nishihara, S., Takase-Yoden, S., Sakoda, Y., Kida, H.: A chicken influenza virus recognizes fucosylated α2,3 sialoglycan receptors on the epithelial cells lining upper respiratory tracts of chickens.
    Virology, 456-457, 131-138 (2014).
    10. Miura, T., Ando, A., Hirano, K., Ogura, C., Kanazawa, T., Ikeguchi, M., Seki, A., Nishihara, S., Hamaguchi, S.: Proliferation assay of mouse embryonic stem (ES) cells exposed to atmosphericpressure plasmas at room temperature.
    J. Phys. D: Appl. Phys. 47(44) 445402-1 - 445402-12 (2014).
    11. Hirano, K., Kinoshita, T., Uemura, T., Motohashi, H., Watanabe, Y., Ebihara, T., Nishiyama, H., Sato, M., Suga, M., Maruyama, Y., Tsuji, N.M., Yamamoto, M., Nishihara, S.* , Sato, C.: Electron microscopy of primary cell cultures in solution and correlative optical microscopy using ASEM.
    Ultramicroscopy,143, 52-66 (2014).
    12. Kinoshita, T., Mori, Y., Hirano, K., Sugimoto, S., Okuda, K., Matsumoto, S., Namiki, T., Ebihara, T., Kawata, M., Nishiyama, H., Sato, M., Suga, M., Higashiyama, K., Sonomoto, K., Mizunoe, Y., Nishihara, S.*, Sato, C. : Immuno-electron microscopy of primary cell cultures from genetically modified animals in liquid by atmospheric scanning electron microscopy.
    Microsc Microanal, 20, 470-484 (2014).
    13. Ichimiya, T., Nishihara, S., Takase-Yoden, S., Kida, H., Aoki- Kinoshita, K.F.: Frequent glycan structure mining of influenza virus data revealed a sulfated glycan motif that increased viral infection.
    Bioinformatics, 30, 706-711(2014).
    14. Hirano, K., Van Kuppevelt, T.H., Nishihara, S.*: The transition of mouse pluripotent stem cells from the naïve to the primed state requires Fas signaling through 3-O-sulfated heparan sulfate structures recognized by the HS4C3 antibody
    BBRC, 430, 1175-1181 (2013).
    15. Nakayama, F., Umeda, S., Ichimiya, T., Kamiyama, S., Hazawa, M., Yasuda, T., Nishihara, S., Imai, T.: Sulfation of keratan sulfate proteoglycan reduces radiation-induced apoptosis in human Burkitt's lymphoma cell lines.
    FEBS Lett., 587, 231-783 (2013).
    16. Hirano, K., Sasaki, N., Ichimiya, T., Miura , T., Van Kuppevelt ,T.H., Nishihara, S.*: 3-O-sulfated heparan sulfate recognized by the antibody HS4C3 contribute to the differentiation of mouse embryonic stem cells via Fas signaling.
    PLoS One, 7, e43440 (2012).
    17. Seki, Y., Mizukura, M., Ichimiya, T., Suda, Y., Nishihara, S., Masuda, M., Takase-Yoden, S.: O-sulfate groups of heparin are critical for inhibition of ecotropic murine leukemia virus infection by heparin.
    Virology, 424, 56-66 (2012).
    18. Sasaki, N., Shinomi, M., Hirano, K., Ui-Tei, K., Nishihara, S.*: LacdiNAc (GalNAcβ1-4GlcNAc) contributes to self-renewal of mouse embryonic stem cells by regulating LIF/STAT3 signaling.
    Stem Cells, 29, 641-650 (2011).
    19. Kamiyama, S., Ichimiya, T., Ikehara, Y., Takase, T., Fujimoto, I., Suda, T., Nakamori, S., Nakamura, M., Nakayama, F., Irimura, T., Nakanishi, H., Watanabe, M., Narimatsu, H., Nishihara, S.*: Expression and role of 3'-phosphoadenosine 5'-phosphosulfate transporters in human colorectal carcinoma.
    Glycobiology, 21, 235-246 (2011).
    20. Yamamoto-Hino, M., Kanie, Y., Awano, W., Aoki-Kinoshita, K.F., Yano, H., Nishihara, S., Okano, H., Ueda, R., Kanie, O., Goto, S.: Identification of genes required for neural-specific glycosylation using functional genomics.
    PLoS Genet., 6, e1001254 (2010).
    21. Sasaki, N., Hirano, T., Kobayashi, K., Toyoda, M., Miyakawa, Y., Okita, H., Kiyokawa, N., Akutsu, H., Umezawa, A., Nishihara, S.*: Chemical inhibition of sulfation accelerates neural differentiation of mouse embryonic stem cells and human induced pluripotent stem cells.
    BBRC, 401, 480-486 (2010).
    22. Ueyama, M., Akimoto, Y., Ichimiya, T., Ueda, R., Kawakami, H., Aigaki, T., Nishihara, S.*: Increased apoptosis of myoblasts in Drosophila model for the Walker-Warburg syndrome.
    PLoS One, 5, e11557 (2010).
    23. Dejima, K., Murata, D., Mizuguchi, S., Nomura, K.H., Izumikawa, T., Kitagawa, H., Gengyo-Ando, K., Yoshina, S., Ichimiya, T., Nishihara, S., Mitani, S., Nomura, K.: Two Golgi-resident 3' -phosphoadenosine 5' -phosphosulfate transporters play distinct roles in heparan sulfate modifications and embryonic and larval development in Caenorhabditis elegans.
    J Biol Chem., 285, 24717-24728 (2010).
    24. Ishikawa, H.O., Ayukawa, T., Nakayama, M., Higashi, S., Kamiyama, S., Nishihara, S., Aoki, K., Ishida, N., Sanai, Y., Matsuno, K.: Two pathways for importing GDP-fucose into the endoplasmic reticulum lumen function redundantly in the O-fucosylation of Notch in Drosophila.
    J Biol Chem., 285, 4122-4129 (2010).
    25. Sasaki, N., Hirano, T., Ichimiya, T., Wakao, M., Hirano, K., Kinoshita-Toyoda, A., Toyoda, H., Suda, Y., Nishihara, S.*: The 3'-phosphoadenosine 5'-phosphosulfate transporters, PAPST1 and 2, contribute to the maintenance and differentiation of mouse embryonic stem cells.
    PLoS One, 4, e8262 (2009).
    26. Dejima, K., Murata, D., Mizuguchi, S., Nomura, K.H. Gengyo-Ando, K., Mitani, S., Kamiyama, S., Nishihara, S., Nomura, K.: The ortholog of human solute carrier family 35 member B1 (UDP-galactose transporter-related protein 1) is involved in maintenance of ER homeostasis and essential for larval development in Caenorhabditis elegans.
    FASEB J., 23, 2215-2225 (2009).
    27. Sesma. J.I., Esther, C.R. Jr, Kreda, S.M., Jones, L., O'Neal, W., Nishihara, S., Nicholas, R.A., Lazarowski, E.R.: ER/Golgi nucleotide sugar transporters contribute to the cellular release of UDP-sugar signaling molecules.
    J. Biol. Chem., 284, 12572-12583 (2009).
    28. Kanie, Y., Yamamoto-Hino, M., Karino, Y., Yokozawa, H., Nishihara, S., Ueda, R., Goto, S., Kanie, O.: Insight into the regulation of glycan synthesis in Drosophila chaoptin based on mass spectrometry.
    PLoS ONE, 4, e5434 (2009).
    29. Yoshida, H., Fuwa, T.J., Arima, M., Hamamoto, H., Sasaki, N., Ichimiya, T., Osawa, K., Ueda, R., Nishihara, S.*: Identification of the Drosophila core 1 β1,3-galactosyltransferase gene that synthesizes T antigen in the embryonic central nervous system and hemocytes.
    Glycobiology, 18, 1094-1104 (2008).
    30. Ono, Y., Kitajima, M., Daikoku, S., Shiroya, T., Nishihara, S., Kanie, Y., Suzuki, K., Goto, S., Kanie, O.: Sequential glycosyltransfer reactions on a microfluidic device: Synthesis of a glycosaminoglycan linkage region tetrasaccharide.
    Lab. on a Chip, 8, 2168-2173 (2008).
    31. Ueyama, M., Takemae, H., Ohmae, Y., Yoshida, H., Toyoda, H., Ueda, R., Nishihara, S.*: Functional analysis of proteoglycan galactosyltransferase II RNAi mutant flies.
    J. Biol. Chem., 283, 6076-6084 (2008).
    32. Sasaki, N., Okishio, K., Ui-Tei, K., Saigo, K., Kinoshita-Toyoda, A., Toyoda, H., Nishimura, T., Suda, Y., Hayasaka, M., Hanaoka, K., Hitoshi, S., Ikenaka, K., Nishihara, S.*: Heparan sulfate regulates self-renewal and pluripotency of embryonic stem cells.
    J. Biol. Chem., 283, 3594-3606 (2008).
    33. Sasaki, N., Yoshida, H., Fuwa, T.J., Kinoshita-Toyoda, A., Toyoda, H., Hirabayashi, Y., Ishida, H., Ueda, R., Nishihara, S.*: Drosophila β1,4-N-acetylgalactosaminyltransferase-A synthesizes the LacdiNAc structures on several glycoproteins and glycosphingolipids.
    Biochem Biophys Res Commun, 354, 522-527 (2007).
    34. Kudo, T., Fujii, T., Ikegami, S., Inokuchi, K., Takayama,Y., Ikehara, Y., Nishihara, S., Togayachi, A., Takahashi, S., Tachibana, K., Yuasa, S., Narimatsu, H.: Mice lacking α1,3-fucosyltransferase IX demonstrate disappearance of Lewis x structure in brain and increased anxiety-like behaviors.
    Glycobiology, 17, 1-9 (2007).
    35. Kusama, S., Ueda, R., Suda, T., Nishihara, S., Etsuko, T.: Involvement of Drosophila Sir2-like genes in the regulation of life span.
    Genes & Genetic Systems, 81, 341-348 (2006).
    36. Goda, E., Kamiyama, S., Uno, T., Yoshida, H., Ueyama, M., Kinoshita-Toyoda , A., Toyoda, H., Ueda, R., Nishihara, S.*: Identification and characterization of a novel Drosophila 3'-phosphoadenosine 5'-phosphosulfate transporter.
    J Biol Chem, 281, 28508-28517 (2006).
    37. Kamiyama, S., Sasaki, N., Goda, E., Ui-Tei, K., Saigo, K., Narimatsu, H., Jigami, Y., Kannagi, R., Irimura, T., Nishihara, S.*: Molecular cloning and characterization of a novel 3'-phosphoadenosine 5'-phosphosulfate transporter, PAPST2.
    J Biol Chem, 281, 10945-10953 (2006).
    38. Sasaki, N., Manya, H., Okubo, R., Kobayashi, K., Ishidad,H., Toda, T., Endo, T., Nishihara, S.*: β4GalT-II is a key regulator of glycosylation of the proteins involved in neuronal development.
    Biochem Biophys Res Commun, 333, 131-137 (2005).
    39. Ichimiya, T., Manya, H., Ohmae, Y., Yoshida, H., Takahashi, K., Ueda, R., Endo, T., Nishihara, S.*: The twisted abdomen phenotype of Drosophila POMT1 and POMT2 mutants coincides with their heterophilic protein O-mannosyltransferase activity.
    J Biol Chem, 279, 42638-42647 (2004).
    40. Kohyama-Koganeya, A., Sasamura, T., Oshima, E., Suzuki, E., Nishihara, S., Ueda, R., Hirabayashi Y.: Drosophila glucosylceramide synthase: A negative regulator of cell death mediated by proapoptotic factors.
    J Biol Chem, 279, 35995-6002 (2004).
    41. Suda,T., Kamiyama, S., Suzuki. M., Kikuchi N., Nakayama., Narimatsu H., Jigami , Y., Aoki, T., Nishihara, S.*: Molecular cloning and characterization of a human multi-substrate specific nucleotide-sugar transporter homologous to Drosophila fringe connection.
    J Biol Chem, 279, 26469-26474 (2004).
    42. Kudo, T., Kaneko, M., Iwasaki, H., Togayachi, A., Nishihara, S., Abe, K., Narimatsu. H.: Normal embryonic and germ cell development in mice lacking α1,3-fucosyltransferase IX (Fut9) which show disappearance of stage-specific embryonic antigen 1.
    Mol Cell Biol, 24, 4221-4228(2004).
    43. Tanaka, T, Tsuda, C., Miura, T., Inazu, T., Tsuji, S., Nishihara, S., Hisamatsu, M., Kajimoto, T.: Design and synthesis of peptide mimetics of GDP-Fucose: Targeting Inhibitors of fucosyltransferases.
    Synlett, 2004, 243-246 (2004).
    44. Kamiyama, S., Suda, T., Ueda, R., Suzuki, M., Okubo, R., Kikuchi, N., Chiba, Y., Goto, S., Toyoda, H., Saigo, K., Watanabe, M., Narimatsu, H., Jigami, Y., Nishihara, S.*: Molecular cloning and identification of 3'-phosphoadenosine 5'-phosphosulfate transporter.
    J Biol Chem, 278, 25958-25963 (2003).
    45. Takemae, H., Ueda, R., Ohkubo, R., Nakato, H., Izumi, S., Saigo, K., Nishihara, S.*: Proteoglycan UDP-galactose: β-xylose β1,4galactosyltransferase I is essential for viability in Drosophila Melanogaster
    J Biol Chem, 278, 15571-15578 (2003).


    Review

    1. Nishihara, S.: Glycans define the stemness of naïve and primed pluripotent stem cells DOI: 10.1007/s10719-016-9740-9, Glycoconj J., in press. Glycoconj J. 2016 Oct 28. [Epub ahead of print]
    2. Nishihara, S.: Glycan functions and signals in embryonic stem cells.
    Glycoscience: Biology and Medicine, edited by Taniguchi N et al., Springer, 2, Part IX, Chapter 180, 1465-1473 (2015).
    3. Nishihara, S.: Members of the nucleotide-sugar transporter family and their functions.
    Glycoscience: Biology and Medicine, edited by Taniguchi N et al., Springer, 2, Part X, Chapter 154, 1253-1266 (2015).
    4. Fuwa, T.J., Nishihara, S.*: Functional analysis of glycans using Drosophila mutants and RNAi.
    Glycoscience: Biology and Medicine, edited by Taniguchi N et al., Springer, 2, Part IX, Chapter 107, 891-900 (2015).
    5. Nishihara, S.: Adenosine 3'-phospho 5'-phosphosulfate transporter 1,2 (PAPST1,2)(SLC35B2,3).
    Handbook of Glycosyltransferases and Related Genes (2nd edition), edited by Taniguchi N., Springer, 3, Section XIV, Chapter 122, 1379-1392 (2014).
    6. Nishihara, S.: UDP-N-acetylglucosamine/UDP-glucose/GDP-mannose transporter (HFRC1) (SLC35D2).
    Handbook of Glycosyltransferases and Related Genes (2nd edition), edited by Taniguchi N., Springer, 3, Section XIV, Chapter 125, 1413-1422 (2014).
    7. Nishihara, S.: CMP-sialic acid transporter (CST)(SLC35A1).
    Handbook of Glycosyltransferases and Related Genes (2nd edition) edited by Taniguchi N., Springer, 3, Section XIV, Chapter 121, 1369-1378 (2014).
    8. Nishihra, S.: Self-Renewal of Naïve State Mouse Embryonic Stem Cells: Role of LacdiNAc in LIF/STAT3 Signaling
    Stem cells and cancer stem cells, Therapeutic applications in disease and injury, edited by Hayat M. A., Springer, 11, Part 1, Chapter 4, 41-50 (2014).
    9. Nishihara, S.: Accelerated neural differentiation of human induced pluripotent stem cells using chlorate treatment.
    Stem cells and cancer stem cells, Therapeutic applications in disease and injury edited by Hayat M. A., Springer, 7, Part 4, Chapter 24, 249-257 (2012).
    10. Sasaki, N., Nishihara, S.*: Gene silencing in mouse embryonic stem cells.
    Methods Mol. Biol., Proteoglycans edited by Françoise R, Springer, 836, Part I, Chapter 4, 53-61(2012).
    11. Nishihara, S.: The function of glycan structures for the maintenance and differentiation of embryonic stem cells.
    Embryonic Stem Cells: The hormonal regulation of pluripotency and embryogenesis, edited by Craig S. Atowood, INTECH, Part 1, Chapter 6, 101-124 (2011).
    12. Nishihara, S.: Glycosyltransferases and transporters that contribute to proteoglycan synthesis in Drosophila: Identification and functional analyses using the heritable and inducible RNAi system.
    Method in Enzymnology, 480, 323-351 (2010).
    13.Nishihara, S.: The function of glycan structures expressed on embryonic stem cells.
    TIGG, 21, 207-218 (2009).
    14. Nishihara, S.: Nucleotide sugar transporter genes and their functional analysis.
    Experimental Glycoscience - Glycobiology, edited by Naoyuki
    Taniguchi et al., Springer, Part1, Section III, 103-107 (2008).
    15. Nishihara, S.: Functional analysis of sugar chains using a genome-wide RNAi system in Drosophila.
    Experimental Glycoscience - Glycobiology, edited by Naoyuki Taniguchi et al., Springer, Part2, Section XIV, 285-89 (2008).
    16. Nishihara, S.: Drosophila development, RNAi, and glycobiology.
    Comprehensive Glycoscience - From Chemistry to Systems Biology, edited by Johannis P Kamerling et al., Elsevier, section E. Cell Glycobiology and Development, 4.05, 49-79 (2007).
    17. Nishihara, S.*, Ueda, R., Goto, S., Toyoda, H., Ishida, H., Nakamura, M.: Approach for functional analysis of glycan using RNA interference.
    Glycoconj J., 21, 63-68 (2004).
    18. Kamiyama, S., Nishihara, S.* : The subcellular PAPS synthesis pathway responsible for the sulfation of proteoglycans: a comparison between humans and Drosophila melanogaster.
    TIGG, 16, 109-123 (2004).
    Membership of Academic Societies Japanese Biochemical Society, The Molecular Biology Society of Japan, Japanese Society of Carbohydrate Research, Molecular Biology Society of Japan, Japanese Cancer Association, American Society for Biochemistry and Molecular Biology, The Japanese Society for Regenerative Medicine, FCCA (FORUM: CARBOHYDRATES COMING OF AGE), ASBMB (American Society for Biochemistry and Molecular Biology), The Society of Glycobiology, ISSCR (International Society for Stem Cell Research)

ページ公開日:2017/08/07
EN_Search-internal-code:faculty-profiles