特任教授・URA

安形 清彦

アンガタ キヨヒコ

Profile

専門分野

糖鎖生物学、分子生物学、生化学、神経発生学

研究テーマ

糖転移酵素の発現と機能制御
発生における糖鎖の役割
糖鎖解析技術の応用

研究内容

糖転移酵素を中心に糖鎖の脳・神経の発達や癌の悪性化における役割について、分子生物学、生化学、細胞生物学の手法やRNA-Seq、ノックアウトマウス、糖鎖DBを用い解析を行ってきました。糖鎖(遺伝子)の新しい機能の解析やバイオマーカーを医療や産業に応用する技術(測定技術、イメージングやターゲッティング)の開発を進めています。
また、URAとして創価大研究者と他大学などの研究機関との共同研究の促進や管理、糖鎖研究のアウトリーチ活動を行います。

主な経歴・職歴・学歴

1995年 筑波大学大学院 生物科学研究科 生物物理化学専攻 修了 博士(理学)

La Jolla Cancer Research Foundation(現Sanford Burnham Prebys Medical Discovery Institute)を経て

2011年 産業技術総合研究所 招聘研究員

2021年 創価大学 糖鎖生命システム融合研究所 研究員

2023年 - 現在 創価大学 糖鎖生命システム融合研究所 特任教授

所属学会・団体

日本分子生物学会、Society for Glycobiology、Asian Community of Glycoscience and Glycotechnology (ACGG)

主な論文・著書

原著論文 (2000年以降)

  1. Murata A, Angata K, Sogabe M, Sato S, Ichida T, Narimatsu H, Genda T. Serum O-glycosylated hepatitis B surface antigen levels in patients with chronic hepatitis B during nucleos(t)ide analog therapy. BMC Gastroenterol. 2022. 22(1):270.
  2. Angata K, Wagatsuma T, Togayachi A, Sato T, Sogabe M, Tajiri K, Ozawa T, Nagashima I, Shimizu H, Iijima S, Korenaga M, Kuno A, Kaji H, Mizokami M, Narimatsu H. O-Glycosylated HBsAg peptide can induce specific antibody neutralizing HBV infection. Biochim. Biophys. Acta Gen. Subj. 2022 1866(1):130020.
  3. Boottanun P, Ino Y, Shimada K, Hiraoka N, Angata K, Narimatsu H. Correlation of the expression of core 3 synthase with survival outcomes of cholangiocarcinoma patients. Oncol. Lett. 2021. 22(5):760.
  4. Nagai-Okatani C, Zou X, Fujita N, Sogabe I, Arakawa K, Nagai M, Angata K, Zhang Y, Aoki-Kinoshita KF, Kuno A. LM-GlycomeAtlas Ver. 2.0: An integrated visualization for lectin microarray-based mouse tissue glycome mapping data with lectin histochemistry. J. Proteome. Res. 2021. 20(4):2069-2075. 
  5. Doi N, Ino Y, Angata K, Shimada K, Narimatsu H, Hiraoka N. Clinicopathological significance of core 3 O-glycan synthetic enzyme, β1,3-N-acetylglucosaminyltransferase 6 in pancreatic ductal adenocarcinoma. PLoS One. 2020. 15(11):e0242851.
  6. Angata K, Sawaki H, Tsujikawa S, Ocho M, Togayachi A, Narimatsu H. Glycogene expression profiling of hepatic cells by RNA-Seq analysis for glyco-biomarker identification. Front Oncol. 2020. 10:1224.
  7. Ito K, Angata K, Kuno A, Okumura A, Sakamoto K, Inoue R, Morita N, Watashi K, Wakita T, Tanaka Y, Sugiyama M, Mizokami M, Yoneda M, Narimatsu H. Screening siRNAs against host glycosylation pathways to develop novel anti-viral agents against hepatitis B virus. Hepatol. Res. 2020. 50(10):1128-1140.
  8. Silsirivanit A, Matsuda A, Kuno A, Tsuruno C, Uenoyama Y, Seubwai W, Angata K, Teeravirote K, Wongkham C, Araki N, Takahama Y, Wongkham S, Narimatsu H. Multi-serum glycobiomarkers improves the diagnosis and prognostic prediction of cholangiocarcinoma. Clin. Chim. Acta. 2020. 510:142-149.
  9. Yamada I, Shiota M, Shinmachi D, Ono T, Tsuchiya S, Hosoda M, Fujita A, Aoki NP, Watanabe Y, Fujita N, Angata K, Kaji H, Narimatsu H, Okuda S, Aoki-Kinoshita KF. The GlyCosmos Portal integrating glycoscience-related omics data. Nat. Methods. 2020. 17(7):649-650.
  10. Nagai-Okatani C, Aoki-Kinoshita KF, Kakuda S, Nagai M, Hagiwara K, Kiyohara K, Fujita N, Suzuki Y, Sato T, Angata K, Kuno A. LM-GlycomeAtlas Ver. 1.0: A Novel Visualization Tool for Lectin Microarray-Based Glycomic Profiles of Mouse Tissue Sections. Molecules. 2019. 24, 2962.
  11. Nakane T, Angata K, Sato T, Kaji H, Narimatsu H. Identification of mammalian glycoproteins with type-I LacdiNAc structures synthesized by the glycosyltransferase B3GALNT2. J. Biol. Chem. 2019. 294:7433-7444.
  12. Wagatsuma T, Kuno A, Angata K, Tajiri K, Takahashi J, Korenaga M, Mizokami M, Narimatsu H. Highly sensitive glycan profiling of hepatitis B viral particles and a simple method for Dane particle enrichment. Anal. Chem. 2018. 90:10196-10203.
  13. Suzuki-Anekoji M, Suzuki A, Wu SW, Angata K, Murai KK, Sugihara K, Akama TO, Khoo KH, Nakayama J, Fukuda MN, Fukuda M. In vivo regulation of steroid hormones by the Chst10 sulfotransferase in mouse. J. Biol. Chem. 2013. 288: 5007-5016.
  14. Yoneyama T, Angata K, Bao X, Courtneidge S, Chanda SK, Fukuda M. Fer kinase regulates cell migration through a-dystroglycan glycosylation. Mol. Biol. Cell 2012. 23: 771-780.
  15. Suzuki-Anekoji M, Suzuki M, Kobayashi T, Sato Y, Nakayama J, Suzuki A, Bao X, Angata K, Fukuda M. HNK-1 glycan functions as a tumor suppressor for astrocytic tumor. J. Biol. Chem. 2011. 286: 32824-32833.
  16. Bao X, Kobayashi M, Hatakeyama S, Angata K, Gullberg D, Nakayama J, Fukuda MN, Fukuda M. Tumor suppressor function of laminin-binding a-dystroglycan requires a distinct β3-N-acetylglucosaminyltransferase. Proc. Natl. Acad. Sci. U.S.A. 2009. 106:12109-12114.
  17. Miyazaki T, Angata K, Seeberger PH, Hindsgaul O, Fukuda M. CMP substitutions preferentially inhibit polysialic acid synthesis. Glycobiology 2008. 18: 187-194.
  18. Angata K, Huckaby V, Ranscht B, Terskikh A, Marth JD, Fukuda M. Polysialic acid-directed migration and differentiation of neural precursors are essential for mouse brain development. Mol. Cell. Biol. 2007. 27: 6659-6668.
  19. Suzuki M, Suzuki M, Nakayama J, Suzuki A, Angata K, Chen S, Sakai K, Hagihara K, Yamaguchi Y, Fukuda M. Polysialic acid facilitates tumor invasion by glioma cells. Glycobiology 2005. 15: 887-894.
  20. Angata K, Long JM, Bukalo O, Lee W, Dityatev A, Wynshaw-Boris A, Schachner M, Fukuda M, Marth JD. Sialyltransferase ST8Sia-II assembles a subset of polysialic acid that directs hippocampal axonal targeting and promotes fear behavior. J. Biol. Chem. 2004. 279: 32603-32613.
  21. Angata K, Chan D, Thibault J, Fukuda M. Molecular dissection of the ST8Sia IV polysialyltransferase: distinct domains are required for NCAM recognition and polysialylation. J. Biol. Chem. 2004. 279: 25883-25890.
  22. El-Battari A, Prorok M, Angata K, Mathieu S, Zerfaoui M, Ong E, Suzuki M, Lombardo D, Fukuda M. Different glycosyltransferases are differentially processed for secretion, dimerization and autoglycosylation. Glycobiology 2003. 13: 941-953.
  23. Suzuki M, Angata K, Nakayama J, Fukuda M. Polysialic acid and mucin-type O-glycans on the neural cell adhesion molecule (NCAM) differentially regulate myoblast fusion. J. Biol. Chem. 2003. 278: 49459-49468.
  24. Angata K, Suzuki M, Fukuda M. ST8Sia II and ST8Sia IV polysialyltransferases exhibit marked differences in utilizing various acceptors containing oligosialic acid and short polysialic acid: the basis for cooperative polysialylation by two enzymes. J. Biol. Chem. 2002. 277: 36808-36817.
  25. Ong E, Suzuki M, Belot F, Yeh JC, Franceschini I, Angata K, Hindsgaul O, Fukuda M. Biosynthesis of HNK-1 glycans on O-linked oligosaccharides attached to the neural cell adhesion molecule (NCAM): The requirement for core2 β1,6-N-acetylglucosaminyltransferase and the muscle specific domain in NCAM. J. Biol. Chem. 2002. 277: 18182-18190.
  26. Mahal LK, Charter NW, Angata K, Fukuda M, Koshland DE Jr, Bertozzi CR. A small-molecule modulator of poly-a2,8-sialic acid expression on cultured neurons and tumor cells. Science 2001. 294: 380-382.
  27. Suzuki A, Hiraoka N, Suzuki M, Angata K, Misra AK, McAuliffe J, Hindsgaul O, Fukuda M. Molecular cloning and expression of a novel human β-Gal-3-O-sulfotransferase that acts preferentially on N-acetyllactosamine in N- and O-glycans. J. Biol. Chem. 2001. 276: 24388-24395.
  28. Franceschini I, Angata K, Ong E, Hong A, Doherty P, Fukuda M. Polysialyltransferase ST8Sia II (STX) polysialylates all of the major isoforms of NCAM and facilitates neurite outgrowth. Glycobiology 2001. 11: 231-239.
  29. Angata K, Yen TY, El-Battari A, Macher BA, Fukuda M. Unique disulfide bond structures found in ST8Sia IV polysialyltransferase are required for its activity. J. Biol. Chem. 2001. 276: 15369-15377.
  30. Angata K, Suzuki M, McAuliffe J, Ding Y, Hindsgaul O, Fukuda M. Differential biosynthesis of polysialic acid on neural cell adhesion molecule (NCAM) and oligosaccharide acceptors by three a2,8-sialyltransferases, ST8Sia IV (PST), ST8Sia II (STX), and ST8Sia III. J. Biol. Chem. 2000. 275: 18594-18601.
  31. Ogawa S, Yoshino R, Angata K, Iwamoto M, Pi M, Kuroe K, Matsuo K, Morio T, Urushihara H, Yanagisawa K, Tanaka Y. The mitochondrial DNA of Dictyostelium discoideum: complete sequence, gene content and genome organization. Mol. Gen. Genet. 2000. 263: 514-519.

英文総説

  1. Angata K, Fukuda M. Roles of polysialic acid in migration and differentiation of neural stem cells. Methods Enzymol. 2010. 479: 25-36.
  2. Angata K, Lee W, Mitoma J, Marth JD, Fukuda M. Cellular and molecular analysis of neural development of glycosyltransferase gene knockout mice. Methods Enzymol. 2006. 417: 25-37.
  3. Angata K, Fukuda M. Polysialyltransferases: major players in polysialic acid synthesis on the neural cell adhesion molecule. Biochimie 2003 85: 195-206.
  4. Nakayama J, Angata K, Ong E, Katsuyama T, Fukuda M. Polysialic acid, a unique glycan that is developmentally regulated by two polysialyltransferases, PST and STX in the central nervous system: from biosynthesis to function. Pathol. Int. 1998. 48: 665-677.

英文著書

  1. Narimatsu H, Suzuki Y, Aoki-Kinoshita K, Fujita N, Sawaki H, Shikanai T, Sato T, Togayachi A, Yoko-o T, Angata K, Kubota T, Noro E. Glycogene Database (GGDB) on the Semantic Web. In: A Practical Guide to Using Glycomics Databases. (Aoki-Kinoshita, K. ed.) 2017. Springer Japan, p163-175.
  2. Angata K, Fukuda M. ST3 beta-galactoside alpha-2,3-sialyltransferase 1 (ST3GAL1). In: Handbook of Glycosyltransferases and Related Genes (Taniguchi N, Honke K, Fukuda M, Narimatsu H, Yamaguchi Y, Angata T eds.) 2014. Springer-Verlag, p637-644.
  3. Angata K, Fukuda M. ST8 alpha-N-acetyl-neuraminide alpha-2,8-sialyltransferase 4 (ST8SIA4). In: Handbook of Glycosyltransferases and Related Genes (Taniguchi N, Honke K, Fukuda M, Narimatsu H, Yamaguchi Y, Angata T eds.) 2014. Springer-Verlag, p805-812.
  4. Angata K, Sato T, Togayachi A, Narimatsu H. Beta1,3-N-acetylgalactosaminyltransferase 2 (B3GALNT2). In: Handbook of Glycosyltransferases and Related Genes (Taniguchi N, Honke K, Fukuda M, Narimatsu H, Yamaguchi Y, Angata T eds.) 2014 Springer-Verlag, p439-445.
  5. Angata K. Neurosphere culture and in vitro assay. 2012. GlycoPOD: http://jcggdb.jp/GlycoPOD/protocolShow.action?nodeId=t162
  6. Angata K, Fukuda M. Carbohydrates of neural cell glycoproteins: structure, biosynthesis and function. In: Neuroglycobiology (Fukuda M, Rutishauser U, Schnaar R, eds.) 2005. Oxford University Press, UK, p1-38.
  7. Nakayama J, Angata K, Suzuki M, Fukuda M. ST8Sia IV (PST-1). In: Handbook of Glycosyltransferases and Related Genes (Taniguchi N, Honke K, Fukuda M, eds.) 2002. Springer-Verlag, Tokyo, p340-346.

和文著書

  1. 小野 多美子、安形 清彦 糖鎖合成パスウェイと糖鎖疾患のデータベース (Glycosmos Pathways, GDGDB, PACDB) Glycoforum 2020. Vol.23 (2), A5: Glycan and Database; https://glycoforum.gr.jp/article/23A5J.html
  2. 山田 一作、安形 清彦、渡辺 由、小野 多美子 複合糖質のデータベース(GlyCosmos Glycoproteins and glycolipid、GlycoProtDB、GlycoNAVI -TCarp、GlycoPOST)Glycoforum 2020. Vol.23 (1), A2: Glycan and Database; https://glycoforum.gr.jp/article/23A2J.html
  3. 細田正恵、安形清彦 レクチンのデータベースの現状(LfDB, LM-GlycomeAtlas, GlyCosmos Lectins - MCAW-DB)Glycoforum 2019. Vol.22 (4), A10: Glycan and Database; https://glycoforum.gr.jp/article/22A10J.html
  4. 赤瀬幸子、安形清彦 糖鎖関連遺伝子のデータベースの現状(GGDB, FlyGlycoDB)Glycoforum 2019. Vol.22 (3), A7: Glycan and Database; https://www.glycoforum.gr.jp/article/22A7J.html
  5. 安形清彦、久野敦 動的恒常性における糖鎖の役割と診断技術への応用 「実験医学」臓器連環による生体恒常性の破綻と疾患(春日雅人 編集・監修)2019年4月増刊号、37 (7) p1031-1037.
  6. 安形清彦 ポリシアル酸と神経発生 「病理と臨床」糖鎖と疾患(中山淳 編)31巻2013年8月号、p839-846